Améliorations de la précision et de la modélisation de la tension de surface au sein de la méthode SPH, et simulations de cas d'amerrissage d'urgence d'helicoptères

Améliorations de la précision et de la modélisation de la tension de surface au sein de la méthode SPH, et simulations de cas d'amerrissage d'urgence d'helicoptères PDF Author: Alban Vergnaud
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
La méthode SPH (Smoothed Particle Hydrodynamics) est une méthode de simulation numérique Lagrangienne et sans maillage, utilisée dans de nombreux domaines de la physique et de l'ingénierie (astrophysique, mécanique des milieux solides, mécanique des milieux fluides, etc...). Dans le domaine de la mécanique des fluides, cette méthode est désormais utilisée dans de nombreux champs d'application (ingénierie navale, automobile, aéronautique, etc...), profitant en particulier de son caractère Lagrangien et de l'absence de connectivités pour simuler des écoulements complexes à surface libre avec de grandes déformations et de nombreuses reconnexions d'interfaces. Cependant, la méthode SPH souffre encore d'un certain manque de précision dû à son caractère Lagrangien et à la relative complexité des opérateurs utilisés. L'objectif général de cette thèse est de proposer plusieurs améliorations en vue d'augmenter la précision de la méthode SPH. Le premier axe de ce travail de recherche porte sur l'étude du désordre particulaire (ou "particle shifting" en anglais) afin de briser les structures Lagrangiennes classiquement observées en SPH et responsables d'une dégradation de la précision des simulations. En particulier, à l'aide d'une étude théorique portant notamment sur des propriétés de convergence et de consistance, une nouvelle loi de shifting est proposée. Un deuxième axe s'intéresse à l'étude d'un nouvel opérateur visqueux en proche paroi, pour un traitement surfacique des conditions aux limites. Le troisième axe de développement concerne la montée en ordre de la méthode SPH, et notamment dans le cas des schémas de type Riemann-SPH. Une nouvelle méthode de reconstruction, basée sur le schéma WENO (Weighted Essentially Non-Oscillatory) et des interpolations MLS (Moving Least Squares), des états gauche et droit des problèmes de Riemann est proposée. En complément de ces recherches, un nouveau modèle de tension de surface précis et robuste est proposé pour les écoulements monophasiques, permettant notamment une imposition de l'angle de contact au niveau de la ligne de contact. Enfin, dans le cadre du projet SARAH (increased SAfety and Robust certification for ditching of Aircraft and Helicopters ; European Unions Horizon 2020 Research and Innovation Programme Grant No. 724139), le dernier axe de cette thèse est consacré à la mise en place d'un modèle numérique permettant la simulation de cas d'amerrissage d'urgence d'hélicoptère. Ce modèle est validé grâce à la comparaison des résultats numériques avec ceux obtenus lors d'une campagne d'essais expérimentaux menée au bassin d'essais de l'Ecole Centrale de Nantes.

Améliorations de la précision et de la modélisation de la tension de surface au sein de la méthode SPH, et simulations de cas d'amerrissage d'urgence d'helicoptères

Améliorations de la précision et de la modélisation de la tension de surface au sein de la méthode SPH, et simulations de cas d'amerrissage d'urgence d'helicoptères PDF Author: Alban Vergnaud
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
La méthode SPH (Smoothed Particle Hydrodynamics) est une méthode de simulation numérique Lagrangienne et sans maillage, utilisée dans de nombreux domaines de la physique et de l'ingénierie (astrophysique, mécanique des milieux solides, mécanique des milieux fluides, etc...). Dans le domaine de la mécanique des fluides, cette méthode est désormais utilisée dans de nombreux champs d'application (ingénierie navale, automobile, aéronautique, etc...), profitant en particulier de son caractère Lagrangien et de l'absence de connectivités pour simuler des écoulements complexes à surface libre avec de grandes déformations et de nombreuses reconnexions d'interfaces. Cependant, la méthode SPH souffre encore d'un certain manque de précision dû à son caractère Lagrangien et à la relative complexité des opérateurs utilisés. L'objectif général de cette thèse est de proposer plusieurs améliorations en vue d'augmenter la précision de la méthode SPH. Le premier axe de ce travail de recherche porte sur l'étude du désordre particulaire (ou "particle shifting" en anglais) afin de briser les structures Lagrangiennes classiquement observées en SPH et responsables d'une dégradation de la précision des simulations. En particulier, à l'aide d'une étude théorique portant notamment sur des propriétés de convergence et de consistance, une nouvelle loi de shifting est proposée. Un deuxième axe s'intéresse à l'étude d'un nouvel opérateur visqueux en proche paroi, pour un traitement surfacique des conditions aux limites. Le troisième axe de développement concerne la montée en ordre de la méthode SPH, et notamment dans le cas des schémas de type Riemann-SPH. Une nouvelle méthode de reconstruction, basée sur le schéma WENO (Weighted Essentially Non-Oscillatory) et des interpolations MLS (Moving Least Squares), des états gauche et droit des problèmes de Riemann est proposée. En complément de ces recherches, un nouveau modèle de tension de surface précis et robuste est proposé pour les écoulements monophasiques, permettant notamment une imposition de l'angle de contact au niveau de la ligne de contact. Enfin, dans le cadre du projet SARAH (increased SAfety and Robust certification for ditching of Aircraft and Helicopters ; European Unions Horizon 2020 Research and Innovation Programme Grant No. 724139), le dernier axe de cette thèse est consacré à la mise en place d'un modèle numérique permettant la simulation de cas d'amerrissage d'urgence d'hélicoptère. Ce modèle est validé grâce à la comparaison des résultats numériques avec ceux obtenus lors d'une campagne d'essais expérimentaux menée au bassin d'essais de l'Ecole Centrale de Nantes.

Méthode numérique lagrangienne pour la simulation d'écoulements à surface libre

Méthode numérique lagrangienne pour la simulation d'écoulements à surface libre PDF Author: Jean-Christophe Marongiu
Publisher:
ISBN:
Category :
Languages : fr
Pages : 170

Get Book Here

Book Description
La méthode SPH (Smoothed Particle Hydrodynamics) est une méthode numérique sans maillage utilisée dans cette étude pour la discrétisation spatiale des équations de la mécanique des fluides (essentiellement les équations d 'Euler). La méthode SPH rencontre depuis quelques années un certain succès dans la simulation d’écoulements à surface libre car son formalisme lagrangien facilite le traitement et le suivi des interfaces. Cette étude a pour but d’appliquer cette méthode pour la simulation des écoulements â surface libre se produisant dans les turbines Pelton. Le formalisme SPH standard est tout d’abord testé, il permet de valider la faisabilité de ce choix mais montre également les limites de la méthode SPH standard, en terme de précision et de fiabilité notamment. Le choix s'est alors porté vers une formulation hybride SPH-ALE (Arbitrary Lagrange Euler) qui entretient une certaine filiation avec le formalisme des volumes finis. SPH-ALE utilise en effet une formulation conservative des équations du mouvement et est capable théoriquement de décrire l'écoulement quelque soit le déplacement des points de discrétisation. Par ailleurs, sur un plan purement numérique, ce formalisme permet l'utilisation de schémas numériques décentrés, en particulier les schémas de type Godunov et leurs variantes d’ordre supérieur. Cette méthode hybride se révèle en pratique nettement supérieure A la méthode standard pour les applications visées. La stabilité des simulations est largement renforcée, et la précision des résultats est fortement améliorée. En particulier le champ de pression retrouve une forme satisfaisante sans lissage numérique particulier. La méthode hybride facilite également le traitement des conditions limites. Alors que ce point constitue une difficulté majeure pour la méthode SPH standard, la méthode SPH-ALE permet de traiter les conditions limites à travers des flux aux frontières qui peuvent être eux-aussi décentrés. La mise en place d’un traitement cohérent et rigoureux des conditions limites constitue la principale contribution de ce travail de thèse. La méthode SPH-ALE est finalement testée sur des cas représentatifs des applications visées et fournit des résultats satisfaisants. En particulier le champ de pression en paroi solide est prédit correctement. En conclusion, les développements effectués dans cette étude ont été guidés par l'application en turbine Pelton qui était visée. La nécessité de manipuler des géométries complexes et d'obtenir un niveau de précision correct ont conduit à privilégier et à développer la méthode hybride SPH-ALE. Ce travail ouvre des perspectives prometteuses de développement rapide grâce au lien existant entre SPH-ALE et la méthode des volumes finis.

Développement D'une Approche Particulaire de Type SPH Pour la Modélisation Des Écoulements Multiphasiques Avec Interfaces Variables

Développement D'une Approche Particulaire de Type SPH Pour la Modélisation Des Écoulements Multiphasiques Avec Interfaces Variables PDF Author: Kamil Szewc
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Smoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle based approach for fluid-flow simulations. One of its advantages over Eulerian techniques is no need of a numerical grid. Therefore, there is no necessity to handle the interface shape as it is done in Volume-of-Fluid, Lavel-Set or Front-Tracking methods. Thus, the SPH approach is increasingly used for hydro-engineering and geophysical applications involving free-surface flows where the natural treatment of evolving interfaces makes it an attractive method. However, for real-life multi-phase simulations this method has only started to be considered and many problems like a proper formulation or a spurious fragmentation of the interface remain to be solved. One of the aims of this work is to critically analyse the existing SPH variants and assess their suitability for complex multi-phase problems. For modelling the surface-tension phenomena the Continuum Surface Force (CSF) methods are validated and used. The natural convection phenomena are modeled using a new, more general formulation, beyond the Boussinesq approximation. A substantial part of the work is devoted to the problem of a spurious fragmentation of the interface (the micro-mixing of SPH particles). Its negative effects and possible remedies are extensively discussed and a new variant is proposed. Contrary to general opinion, it is proven that the micro-mixing is not only the problem of flows with neglegible surface tension. A significant part of this work is devoted to the modelling of bubbles rising through liquids, including bubble-bubble interactions. The SPH simulations were performed for several flow regimes corresponding to different relative importance of surface tension, viscosity and buoyancy effects. The predicted topological changes, bubble terminal velocity and drag coefficients were validated with respect to reference experimental data and compared to other numerical methods. In the work, fundamental concepts of assuring the incompressibility constraint in SPH are also recalled. An important part of work is a thorough comparison of two different incompressibility treatments: the weakly compressible approach, where a suitably chosen equation of state is used, and truly incompressible method (in two basic variants), where the velocity field is projected onto a divergence-free space. Their usefulness for multi-phase modelling is discussed. Problems associated with the numerical setup are investigated, and an optimal choice of the computational parameters is proposed and verified. For these purposes the study is supported by many two- and three-dimensional validation cases. In addition, the present work opens new perspectives to future simulations of boiling phenomena using the SPH method. First ideas and sketches for the implementation of the liquid-vapour phase change are presented.

Schémas d'ordre élevé pour la méthode SPH-ALE appliquée à des simulations sur machines hydrauliques

Schémas d'ordre élevé pour la méthode SPH-ALE appliquée à des simulations sur machines hydrauliques PDF Author: Gilles-Alexis Renaut
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
Ce travail traite des méthodes de calcul numérique pour les simulations hydrodynamiques appliquées principalement sur des produits développés par ANDRITZ HYDRO. Il s’agit ici de mettre en place des schémas d’ordre élevé pour des simulations CFD en utilisant le code de calcul ASPHODEL développé et utilisé par ANDRITZ HYDRO. Les principales motivations sont l’augmentation de la fiabilité des résultats de calculs numériques avec un coût de calcul raisonnable. Cette fiabilité s’exprime à travers l’augmentation de la précision et de la robustesse des schémas numériques. Le code de calcul ASPHODEL est basé sur la méthode sans maillage SPH-ALE. Mélange entre les volumes finis et la méthode SPH (Smoothed Particle Hydrodynamics), la méthode SPH-ALE emploie un ensemble de points appelés particules servant à la discrétisation du domaine fluide. Elle permet en particulier de par son caractère sans maillage, un suivi des surfaces libres sans effort de calcul supplémentaire. Cet aspect est véritablement attrayant pour bon nombre d’applications industrielles notamment la simulation des écoulements à surface libre se produisant dans une turbine Pelton, mais également le remplissage d’une turbine Francis. Cependant, le bémol à cette méthode est son manque de précision spatiale. En effet les points de calcul étant mobiles, les opérateurs spatiaux doivent être en mesure de conserver leur précision et leur robustesse au cours du temps. La qualité des résultats en est du coup impactée, en particulier le champ de pression souvent excessivement bruité. La montée en ordre et l’amélioration de la consistance des opérateurs pour un vaste panel de configurations géométriques sont donc les enjeux de ce travail. En utilisant des outils inspirés par les volumes finis non-structurés, il est possible d’améliorer les opérateurs spatiaux. En effet, la montée en ordre ou p-raffinement peut notamment se faire avec des reconstructions d’ordres élevés pour évaluer les états aux interfaces des problèmes de Riemann. La sommation des flux numériques résolus par un solveur de Riemann est ensuite retravaillée pour obtenir un schéma numérique d’ordre global cohérent. Le même soucis de cohérence avec les schémas en temps doit d’ailleurs être pensé. Le gain de précision apporté par les schémas numériques d’ordre élevé est comparé avec un raffinement spatial, c’est à dire une augmentation du nombre des particules de taille plus petite, aussi appelé h-raffinement. La méthode SPH-ALE améliorée est ensuite testée sur des cas représentatifs des applications visées. En conclusion, les développements effectués dans cette étude ont été guidés par l’application en turbine Pelton principalement mais il va de soi qu’ils sont applicables à des écoulements sans surface libre dans les turbines Francis par exemple. Ce travail montre les possibilités d’une méthode sans maillage pour des cas d’écoulements complexes autour de géométrie tournantes.