Author: Yujiro Kawamata
Publisher: Cambridge University Press
ISBN: 1009344676
Category : Mathematics
Languages : en
Pages : 263
Book Description
The finite generation theorem is a major achievement of modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic zero is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by Birkar-Cascini-Hacon-McKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend and break method, vanishing theorems, positivity theorems and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.
Algebraic Varieties: Minimal Models and Finite Generation
Author: Yujiro Kawamata
Publisher: Cambridge University Press
ISBN: 1009344676
Category : Mathematics
Languages : en
Pages : 263
Book Description
The finite generation theorem is a major achievement of modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic zero is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by Birkar-Cascini-Hacon-McKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend and break method, vanishing theorems, positivity theorems and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.
Publisher: Cambridge University Press
ISBN: 1009344676
Category : Mathematics
Languages : en
Pages : 263
Book Description
The finite generation theorem is a major achievement of modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic zero is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by Birkar-Cascini-Hacon-McKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend and break method, vanishing theorems, positivity theorems and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.
Classification of Higher Dimensional Algebraic Varieties
Author: Christopher D. Hacon
Publisher: Springer Science & Business Media
ISBN: 3034602901
Category : Mathematics
Languages : en
Pages : 206
Book Description
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
Publisher: Springer Science & Business Media
ISBN: 3034602901
Category : Mathematics
Languages : en
Pages : 206
Book Description
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
Complex Algebraic Surfaces
Author: Arnaud Beauville
Publisher: Cambridge University Press
ISBN: 9780521498425
Category : Mathematics
Languages : en
Pages : 148
Book Description
Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.
Publisher: Cambridge University Press
ISBN: 9780521498425
Category : Mathematics
Languages : en
Pages : 148
Book Description
Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.
Classification of Algebraic Varieties
Author: Carel Faber
Publisher: European Mathematical Society
ISBN: 9783037190074
Category : Mathematics
Languages : en
Pages : 356
Book Description
Fascinating and surprising developments are taking place in the classification of algebraic varieties. The work of Hacon and McKernan and many others is causing a wave of breakthroughs in the minimal model program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the field. Inspired by this exciting progress, the editors organized a meeting at Schiermonnikoog and invited leading experts to write papers about the recent developments. The result is the present volume, a lively testimony to the sudden advances that originate from these new ideas. This volume will be of interest to a wide range of pure mathematicians, but will appeal especially to algebraic and analytic geometers.
Publisher: European Mathematical Society
ISBN: 9783037190074
Category : Mathematics
Languages : en
Pages : 356
Book Description
Fascinating and surprising developments are taking place in the classification of algebraic varieties. The work of Hacon and McKernan and many others is causing a wave of breakthroughs in the minimal model program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the field. Inspired by this exciting progress, the editors organized a meeting at Schiermonnikoog and invited leading experts to write papers about the recent developments. The result is the present volume, a lively testimony to the sudden advances that originate from these new ideas. This volume will be of interest to a wide range of pure mathematicians, but will appeal especially to algebraic and analytic geometers.
Complex Analysis and Algebraic Geometry
Author: Kunihiko Kodaira
Publisher: CUP Archive
ISBN: 9780521217774
Category : Mathematics
Languages : en
Pages : 424
Book Description
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Publisher: CUP Archive
ISBN: 9780521217774
Category : Mathematics
Languages : en
Pages : 424
Book Description
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Rational Points on Varieties
Author: Bjorn Poonen
Publisher: American Mathematical Soc.
ISBN: 1470437732
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Publisher: American Mathematical Soc.
ISBN: 1470437732
Category : Mathematics
Languages : en
Pages : 358
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Algebraic Geometry
Author: Spencer Bloch
Publisher: American Mathematical Soc.
ISBN: 0821814761
Category : Mathematics
Languages : en
Pages : 489
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821814761
Category : Mathematics
Languages : en
Pages : 489
Book Description
O-Minimality and Diophantine Geometry
Author: G. O. Jones
Publisher: Cambridge University Press
ISBN: 1107462495
Category : Mathematics
Languages : en
Pages : 235
Book Description
This book brings the researcher up to date with recent applications of mathematical logic to number theory.
Publisher: Cambridge University Press
ISBN: 1107462495
Category : Mathematics
Languages : en
Pages : 235
Book Description
This book brings the researcher up to date with recent applications of mathematical logic to number theory.
Classical Algebraic Geometry
Author: Igor V. Dolgachev
Publisher: Cambridge University Press
ISBN: 1139560786
Category : Mathematics
Languages : en
Pages : 653
Book Description
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Publisher: Cambridge University Press
ISBN: 1139560786
Category : Mathematics
Languages : en
Pages : 653
Book Description
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Lectures on Invariant Theory
Author: Igor Dolgachev
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244
Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244
Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.