Algebraic Topology. Seattle 1985

Algebraic Topology. Seattle 1985 PDF Author: Haynes R. Miller
Publisher: Springer
ISBN: 3540479864
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
During the Winter and spring of 1985 a Workshop in Algebraic Topology was held at the University of Washington. The course notes by Emmanuel Dror Farjoun and by Frederick R. Cohen contained in this volume are carefully written graduate level expositions of certain aspects of equivariant homotopy theory and classical homotopy theory, respectively. M.E. Mahowald has included some of the material from his further papers, represent a wide range of contemporary homotopy theory: the Kervaire invariant, stable splitting theorems, computer calculation of unstable homotopy groups, and studies of L(n), Im J, and the symmetric groups.

Algebraic Topology. Seattle 1985

Algebraic Topology. Seattle 1985 PDF Author: Haynes R. Miller
Publisher: Springer
ISBN: 3540479864
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
During the Winter and spring of 1985 a Workshop in Algebraic Topology was held at the University of Washington. The course notes by Emmanuel Dror Farjoun and by Frederick R. Cohen contained in this volume are carefully written graduate level expositions of certain aspects of equivariant homotopy theory and classical homotopy theory, respectively. M.E. Mahowald has included some of the material from his further papers, represent a wide range of contemporary homotopy theory: the Kervaire invariant, stable splitting theorems, computer calculation of unstable homotopy groups, and studies of L(n), Im J, and the symmetric groups.

Algebraic Topology. Seattle 1985

Algebraic Topology. Seattle 1985 PDF Author: Haynes R. Miller
Publisher: Springer
ISBN: 9783540184812
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
During the Winter and spring of 1985 a Workshop in Algebraic Topology was held at the University of Washington. The course notes by Emmanuel Dror Farjoun and by Frederick R. Cohen contained in this volume are carefully written graduate level expositions of certain aspects of equivariant homotopy theory and classical homotopy theory, respectively. M.E. Mahowald has included some of the material from his further papers, represent a wide range of contemporary homotopy theory: the Kervaire invariant, stable splitting theorems, computer calculation of unstable homotopy groups, and studies of L(n), Im J, and the symmetric groups.

Stable and Unstable Homotopy

Stable and Unstable Homotopy PDF Author: William G. Dwyer
Publisher: American Mathematical Soc.
ISBN: 9780821871263
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Fields Institute as part of the homotopy program during the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.

Recent Progress in Homotopy Theory

Recent Progress in Homotopy Theory PDF Author: Donald M. Davis
Publisher: American Mathematical Soc.
ISBN: 0821828010
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
This volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.

Homotopy Theory of Function Spaces and Related Topics

Homotopy Theory of Function Spaces and Related Topics PDF Author: Yves Félix
Publisher: American Mathematical Soc.
ISBN: 0821849298
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
This volume contains the proceedings of the Workshop on Homotopy Theory of Function Spaces and Related Topics, which was held at the Mathematisches Forschungsinstitut Oberwolfach, in Germany, from April 5-11, 2009. This volume contains fourteen original research articles covering a broad range of topics that include: localization and rational homotopy theory, evaluation subgroups, free loop spaces, Whitehead products, spaces of algebraic maps, gauge groups, loop groups, operads, and string topology. In addition to reporting on various topics in the area, this volume is supposed to facilitate the exchange of ideas within Homotopy Theory of Function Spaces, and promote cross-fertilization between Homotopy Theory of Function Spaces and other areas. With these latter aims in mind, this volume includes a survey article which, with its extensive bibliography, should help bring researchers and graduate students up to speed on activity in this field as well as a problems list, which is an expanded and edited version of problems discussed in sessions held at the conference. The problems list is intended to suggest directions for future work.

Fibrewise Homotopy Theory

Fibrewise Homotopy Theory PDF Author: Michael Charles Crabb
Publisher: Springer Science & Business Media
ISBN: 1447112652
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Topology occupies a central position in modern mathematics, and the concept of the fibre bundle provides an appropriate framework for studying differential geometry. Fibrewise homotopy theory is a very large subject that has attracted a good deal of research in recent years. This book provides an overview of the subject as it stands at present.

More Concise Algebraic Topology

More Concise Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 0226511782
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.

Handbook of Homotopy Theory

Handbook of Homotopy Theory PDF Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251619
Category : Mathematics
Languages : en
Pages : 982

Get Book Here

Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Flow Lines and Algebraic Invariants in Contact Form Geometry

Flow Lines and Algebraic Invariants in Contact Form Geometry PDF Author: Abbas Bahri
Publisher: Springer Science & Business Media
ISBN: 1461200210
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.

Equivariant Cohomology of Configuration Spaces Mod 2

Equivariant Cohomology of Configuration Spaces Mod 2 PDF Author: Pavle V. M. Blagojević
Publisher: Springer Nature
ISBN: 3030841383
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
This book gives a brief treatment of the equivariant cohomology of the classical configuration space F(R^d,n) from its beginnings to recent developments. This subject has been studied intensively, starting with the classical papers of Artin (1925/1947) on the theory of braids, and progressing through the work of Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol'd (1969). The focus of this book is on the mod 2 equivariant cohomology algebras of F(R^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung's main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper. This invalidates a paper by three of the authors, Blagojević, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and l-skew embeddings. Using the new proof of Hung's main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker. Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject. It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.