Author: Harald Niederreiter
Publisher: Princeton University Press
ISBN: 140083130X
Category : Mathematics
Languages : en
Pages : 273
Book Description
This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
Algebraic Geometry in Coding Theory and Cryptography
Author: Harald Niederreiter
Publisher: Princeton University Press
ISBN: 140083130X
Category : Mathematics
Languages : en
Pages : 273
Book Description
This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
Publisher: Princeton University Press
ISBN: 140083130X
Category : Mathematics
Languages : en
Pages : 273
Book Description
This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
Algebraic Geometry for Coding Theory and Cryptography
Author: Everett W. Howe
Publisher: Springer
ISBN: 3319639315
Category : Mathematics
Languages : en
Pages : 160
Book Description
Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.
Publisher: Springer
ISBN: 3319639315
Category : Mathematics
Languages : en
Pages : 160
Book Description
Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.
Coding Theory And Cryptology
Author: Harald Niederreiter
Publisher: World Scientific
ISBN: 981448766X
Category : Mathematics
Languages : en
Pages : 460
Book Description
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Publisher: World Scientific
ISBN: 981448766X
Category : Mathematics
Languages : en
Pages : 460
Book Description
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Advances in Algebraic Geometry Codes
Author: Edgar Mart¡nez-Moro
Publisher: World Scientific
ISBN: 981279400X
Category : Mathematics
Languages : en
Pages : 453
Book Description
Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.
Publisher: World Scientific
ISBN: 981279400X
Category : Mathematics
Languages : en
Pages : 453
Book Description
Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.
Algebraic Geometry Modeling in Information Theory
Author: Edgar Martinez-Moro
Publisher: World Scientific
ISBN: 9814335762
Category : Computers
Languages : en
Pages : 334
Book Description
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
Publisher: World Scientific
ISBN: 9814335762
Category : Computers
Languages : en
Pages : 334
Book Description
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
Algebraic Function Fields and Codes
Author: Henning Stichtenoth
Publisher: Springer Science & Business Media
ISBN: 3540768785
Category : Mathematics
Languages : en
Pages : 360
Book Description
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Publisher: Springer Science & Business Media
ISBN: 3540768785
Category : Mathematics
Languages : en
Pages : 360
Book Description
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Elementary Number Theory, Cryptography and Codes
Author: M. Welleda Baldoni
Publisher: Springer Science & Business Media
ISBN: 3540692002
Category : Mathematics
Languages : en
Pages : 530
Book Description
In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.
Publisher: Springer Science & Business Media
ISBN: 3540692002
Category : Mathematics
Languages : en
Pages : 530
Book Description
In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.
Gröbner Bases, Coding, and Cryptography
Author: Massimiliano Sala
Publisher: Springer Science & Business Media
ISBN: 3540938060
Category : Mathematics
Languages : en
Pages : 428
Book Description
Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Gröbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.
Publisher: Springer Science & Business Media
ISBN: 3540938060
Category : Mathematics
Languages : en
Pages : 428
Book Description
Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Gröbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.
Elements of Algebraic Coding Theory
Author: L.R. Vermani
Publisher: CRC Press
ISBN: 9780412573804
Category : Mathematics
Languages : en
Pages : 270
Book Description
Coding theory came into existence in the late 1940's and is concerned with devising efficient encoding and decoding procedures. The book is intended as a principal text for first courses in coding and algebraic coding theory, and is aimed at advanced undergraduates and recent graduates as both a course and self-study text. BCH and cyclic, Group codes, Hamming codes, polynomial as well as many other codes are introduced in this textbook. Incorporating numerous worked examples and complete logical proofs, it is an ideal introduction to the fundamental of algebraic coding.
Publisher: CRC Press
ISBN: 9780412573804
Category : Mathematics
Languages : en
Pages : 270
Book Description
Coding theory came into existence in the late 1940's and is concerned with devising efficient encoding and decoding procedures. The book is intended as a principal text for first courses in coding and algebraic coding theory, and is aimed at advanced undergraduates and recent graduates as both a course and self-study text. BCH and cyclic, Group codes, Hamming codes, polynomial as well as many other codes are introduced in this textbook. Incorporating numerous worked examples and complete logical proofs, it is an ideal introduction to the fundamental of algebraic coding.
Algebraic Curves in Cryptography
Author: San Ling
Publisher: CRC Press
ISBN: 1420079476
Category : Computers
Languages : en
Pages : 333
Book Description
The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sh
Publisher: CRC Press
ISBN: 1420079476
Category : Computers
Languages : en
Pages : 333
Book Description
The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sh