Author: A.I. Kostrikin
Publisher: Springer Science & Business Media
ISBN: 366203235X
Category : Mathematics
Languages : en
Pages : 248
Book Description
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
Algebra IX
Author: A.I. Kostrikin
Publisher: Springer Science & Business Media
ISBN: 366203235X
Category : Mathematics
Languages : en
Pages : 248
Book Description
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
Publisher: Springer Science & Business Media
ISBN: 366203235X
Category : Mathematics
Languages : en
Pages : 248
Book Description
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
Algebra IX
Author: Алексей Иванович Кострикин
Publisher: Springer Science & Business Media
ISBN: 9783540570387
Category : Mathematics
Languages : en
Pages : 272
Book Description
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
Publisher: Springer Science & Business Media
ISBN: 9783540570387
Category : Mathematics
Languages : en
Pages : 272
Book Description
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
Numerical Linear Algebra with Applications
Author: William Ford
Publisher: Academic Press
ISBN: 0123947847
Category : Mathematics
Languages : en
Pages : 629
Book Description
Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. - Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra - Detailed explanations and examples - A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra - Examples from engineering and science applications
Publisher: Academic Press
ISBN: 0123947847
Category : Mathematics
Languages : en
Pages : 629
Book Description
Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. - Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra - Detailed explanations and examples - A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra - Examples from engineering and science applications
Commutative Algebra
Author: Luchezar L. Avramov
Publisher: American Mathematical Soc.
ISBN: 0821832336
Category : Mathematics
Languages : en
Pages : 376
Book Description
This volume contains 21 articles based on invited talks given at two international conferences held in France in 2001. Most of the papers are devoted to various problems of commutative algebra and their relation to properties of algebraic varieties. The book is suitable for graduate students and research mathematicians interested in commutative algebra and algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821832336
Category : Mathematics
Languages : en
Pages : 376
Book Description
This volume contains 21 articles based on invited talks given at two international conferences held in France in 2001. Most of the papers are devoted to various problems of commutative algebra and their relation to properties of algebraic varieties. The book is suitable for graduate students and research mathematicians interested in commutative algebra and algebraic geometry.
Applied Linear Algebra
Author: Peter J. Olver
Publisher: Springer
ISBN: 3319910418
Category : Mathematics
Languages : en
Pages : 702
Book Description
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author’s text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here.
Publisher: Springer
ISBN: 3319910418
Category : Mathematics
Languages : en
Pages : 702
Book Description
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author’s text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here.
Invitation To Algebra: A Resource Compendium For Teachers, Advanced Undergraduate Students And Graduate Students In Mathematics
Author: Vlastimil Dlab
Publisher: World Scientific
ISBN: 9811219990
Category : Mathematics
Languages : en
Pages : 452
Book Description
This book presents a compendium style account of a comprehensive mathematical journey from Arithmetic to Algebra. It contains material that is helpful to graduate and advanced undergraduate students in mathematics, university and college professors teaching mathematics, as well as some mathematics teachers teaching in the final year of high school. A successful teacher must know more than what a particular course curriculum asks for. A number of topics that are missing in present-day textbooks, and which may be attractive to students at the graduate or advanced undergraduate level in mathematics, for example, continued fractions, arithmetic progressions of higher order, complex numbers in plane geometry, differential schemes, path semigroups and path algebras, have been carefully presented. This reflects the aim of the book to attract students to mathematics.
Publisher: World Scientific
ISBN: 9811219990
Category : Mathematics
Languages : en
Pages : 452
Book Description
This book presents a compendium style account of a comprehensive mathematical journey from Arithmetic to Algebra. It contains material that is helpful to graduate and advanced undergraduate students in mathematics, university and college professors teaching mathematics, as well as some mathematics teachers teaching in the final year of high school. A successful teacher must know more than what a particular course curriculum asks for. A number of topics that are missing in present-day textbooks, and which may be attractive to students at the graduate or advanced undergraduate level in mathematics, for example, continued fractions, arithmetic progressions of higher order, complex numbers in plane geometry, differential schemes, path semigroups and path algebras, have been carefully presented. This reflects the aim of the book to attract students to mathematics.
Navigating Through Algebra in Grades 9-12
Author:
Publisher:
ISBN: 9780873535021
Category : Algebra
Languages : en
Pages : 86
Book Description
Publisher:
ISBN: 9780873535021
Category : Algebra
Languages : en
Pages : 86
Book Description
The Hilbert Function of a Level Algebra
Author: A. V. Geramita
Publisher: American Mathematical Soc.
ISBN: 0821839403
Category : Mathematics
Languages : en
Pages : 154
Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Publisher: American Mathematical Soc.
ISBN: 0821839403
Category : Mathematics
Languages : en
Pages : 154
Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Multilinear Algebra
Author: Werner Greub
Publisher: Springer Science & Business Media
ISBN: 1461394252
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book is a revised version of the first edition and is intended as a Linear Algebra sequel and companion volume to the fourth edition of (Graduate Texts in Mathematics 23). As before, the terminology and basic results of Linear Algebra are frequently used without refer~nce. In particular, the reader should be familiar with Chapters 1-5 and the first part of Chapter 6 of that book, although other sections are occasionally used. In this new version of Multilinear Algebra, Chapters 1-5 remain essen tially unchanged from the previous edition. Chapter 6 has been completely rewritten and split into three (Chapters 6, 7, and 8). Some of the proofs have been simplified and a substantial amount of new material has been added. This applies particularly to the study of characteristic coefficients and the Pfaffian. The old Chapter 7 remains as it stood, except that it is now Chapter 9. The old Chapter 8 has been suppressed and the material which it con tained (multilinear functions) has been relocated at the end of Chapters 3, 5, and 9. The last two chapters on Clifford algebras and their representations are completely new. In view of the growing importance of Clifford algebras and the relatively few references available, it was felt that these chapters would be useful to both mathematicians and physicists.
Publisher: Springer Science & Business Media
ISBN: 1461394252
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book is a revised version of the first edition and is intended as a Linear Algebra sequel and companion volume to the fourth edition of (Graduate Texts in Mathematics 23). As before, the terminology and basic results of Linear Algebra are frequently used without refer~nce. In particular, the reader should be familiar with Chapters 1-5 and the first part of Chapter 6 of that book, although other sections are occasionally used. In this new version of Multilinear Algebra, Chapters 1-5 remain essen tially unchanged from the previous edition. Chapter 6 has been completely rewritten and split into three (Chapters 6, 7, and 8). Some of the proofs have been simplified and a substantial amount of new material has been added. This applies particularly to the study of characteristic coefficients and the Pfaffian. The old Chapter 7 remains as it stood, except that it is now Chapter 9. The old Chapter 8 has been suppressed and the material which it con tained (multilinear functions) has been relocated at the end of Chapters 3, 5, and 9. The last two chapters on Clifford algebras and their representations are completely new. In view of the growing importance of Clifford algebras and the relatively few references available, it was felt that these chapters would be useful to both mathematicians and physicists.
Advances in Algebra
Author: Jörg Feldvoss
Publisher: Springer
ISBN: 3030115216
Category : Mathematics
Languages : en
Pages : 328
Book Description
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
Publisher: Springer
ISBN: 3030115216
Category : Mathematics
Languages : en
Pages : 328
Book Description
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.