Author: Katsuyuki Morii
Publisher: Springer Nature
ISBN: 3030185141
Category : Science
Languages : en
Pages : 55
Book Description
This concise volume provides an introduction to the working principles, design, and construction of air-stable inverted organic light-emitting diodes (OLEDs), which lead to the realization of practical flexible electronics. The first part of the book reviews the history of the three generations of inverted OLEDs: hybrid organic inorganic light-emitting diodes (HOILEDs), metal oxides and organic electron injection layer, describing the materials, fabrication techniques, device structure, applications, and technological challenges involved in each case. The second part of the book focuses on the carrier injection mechanism in OLEDs. The book will be of interest to students and researchers working on organic optoelectronics.
Air-Stable Inverted Organic Light-Emitting Diodes
Author: Katsuyuki Morii
Publisher: Springer Nature
ISBN: 3030185141
Category : Science
Languages : en
Pages : 55
Book Description
This concise volume provides an introduction to the working principles, design, and construction of air-stable inverted organic light-emitting diodes (OLEDs), which lead to the realization of practical flexible electronics. The first part of the book reviews the history of the three generations of inverted OLEDs: hybrid organic inorganic light-emitting diodes (HOILEDs), metal oxides and organic electron injection layer, describing the materials, fabrication techniques, device structure, applications, and technological challenges involved in each case. The second part of the book focuses on the carrier injection mechanism in OLEDs. The book will be of interest to students and researchers working on organic optoelectronics.
Publisher: Springer Nature
ISBN: 3030185141
Category : Science
Languages : en
Pages : 55
Book Description
This concise volume provides an introduction to the working principles, design, and construction of air-stable inverted organic light-emitting diodes (OLEDs), which lead to the realization of practical flexible electronics. The first part of the book reviews the history of the three generations of inverted OLEDs: hybrid organic inorganic light-emitting diodes (HOILEDs), metal oxides and organic electron injection layer, describing the materials, fabrication techniques, device structure, applications, and technological challenges involved in each case. The second part of the book focuses on the carrier injection mechanism in OLEDs. The book will be of interest to students and researchers working on organic optoelectronics.
Air-stable Inverted Organic Light-emitting Diodes
Author: Katsuyuki Morii
Publisher:
ISBN: 9783030185152
Category : Electronic books
Languages : en
Pages : 55
Book Description
This concise volume provides an introduction to the working principles, design, and construction of air-stable inverted organic light-emitting diodes (OLEDs), leading to the realization of practical flexible organic optoelectronics for displays and lighting. The first part of the book considers the requirements for air stability of OLED devices, the challenges involved in achieving air stability and the history of approaches to the problem. It goes on to describe hybrid organic-inorganic LEDs and their carrier injection mechanism, and summarises the early phase of inverted OLED development. The third part focuses on the electron injection layer and interfacial engineering, and finally the book describes the inverted OLED and the carrier injection mechanism in recently-developed devices. The book will be of interest to students and researchers working on practical organic optoelectronics.
Publisher:
ISBN: 9783030185152
Category : Electronic books
Languages : en
Pages : 55
Book Description
This concise volume provides an introduction to the working principles, design, and construction of air-stable inverted organic light-emitting diodes (OLEDs), leading to the realization of practical flexible organic optoelectronics for displays and lighting. The first part of the book considers the requirements for air stability of OLED devices, the challenges involved in achieving air stability and the history of approaches to the problem. It goes on to describe hybrid organic-inorganic LEDs and their carrier injection mechanism, and summarises the early phase of inverted OLED development. The third part focuses on the electron injection layer and interfacial engineering, and finally the book describes the inverted OLED and the carrier injection mechanism in recently-developed devices. The book will be of interest to students and researchers working on practical organic optoelectronics.
A New Generation of Organic Light-Emitting Materials and Devices
Author: Shi-Jian Su
Publisher: Frontiers Media SA
ISBN: 288963163X
Category :
Languages : en
Pages : 144
Book Description
Since the invention of the first efficient organic light-emitting diodes (OLEDs) by C. T. Tang and S. VanSlyke, OLEDs have attracted close interest as a promising candidate for next-generation full-color displays and future solid-state lighting sources because of a number of advantages like high brightness and contrast, high luminous efficiency, fast response time, wide viewing angle, low power consumption, and light weight. The recombination of holes and electrons under electrical excitation typically generates 25% singlet excitons and 75% triplet excitons. For traditional fluorescent OLEDs, only 25% singlet excitons can be utilized to emit light, while the other 75% triplet excitons are generally wasted through nonradiative transition. By adopting noble metal phosphorescent complexes, an internal quantum efficiency (IQE) of 100% could be achieved by utilizing both the 25% singlet excitons and 75% triplet excitons. However, these phosphors usually contain nonrenewable and highcost iridium or platinum noble metals. Most recently, unity IQE has been readily achieved through noble metal-free purely organic emitters, such as thermally activated delayed fluorescence (TADF) emitters, hybridized local and charge-transfer state (HLCT) “hot exciton” emitters, binary- or ternary-mixed donor-acceptor exciplex emitters, and neutral p radical emitters, etc. In addition, the combination of conventional p-type hole-transport and n-type electron-transport materials in an appropriate device structure can also provide an uncommon efficiency. Both strategies are essential and attractive for high-performance and low-cost full-color displays and white OLED applications. This Research Topic mainly focus on this new generation of organic light-emitting materials and devices, including design, synthesis, and characterization of light-emitting organic molecules with tunable excited states, and their structural, electrical, and photophysical properties. Contributions relating to carrier transporting materials and corresponding device engineering are also included. Two mini reviews and thirteen original research articles by recognized academic experts in their respective fields are collected in this Research Topic, which will offer a broad perspective of noble metal-free organic light emitters, including conventional fluorescent emitters, TADF emitters, HLCT emitters, exciplex emitters, aggregation-induced emission (AIE) luminogens, and their corresponding devices. We believe this eBook should attract the attention of multidisciplinary researchers in the fields of materials science, organic synthesis, and electronic device engineering, especially for those engaged in OLED-related areas.
Publisher: Frontiers Media SA
ISBN: 288963163X
Category :
Languages : en
Pages : 144
Book Description
Since the invention of the first efficient organic light-emitting diodes (OLEDs) by C. T. Tang and S. VanSlyke, OLEDs have attracted close interest as a promising candidate for next-generation full-color displays and future solid-state lighting sources because of a number of advantages like high brightness and contrast, high luminous efficiency, fast response time, wide viewing angle, low power consumption, and light weight. The recombination of holes and electrons under electrical excitation typically generates 25% singlet excitons and 75% triplet excitons. For traditional fluorescent OLEDs, only 25% singlet excitons can be utilized to emit light, while the other 75% triplet excitons are generally wasted through nonradiative transition. By adopting noble metal phosphorescent complexes, an internal quantum efficiency (IQE) of 100% could be achieved by utilizing both the 25% singlet excitons and 75% triplet excitons. However, these phosphors usually contain nonrenewable and highcost iridium or platinum noble metals. Most recently, unity IQE has been readily achieved through noble metal-free purely organic emitters, such as thermally activated delayed fluorescence (TADF) emitters, hybridized local and charge-transfer state (HLCT) “hot exciton” emitters, binary- or ternary-mixed donor-acceptor exciplex emitters, and neutral p radical emitters, etc. In addition, the combination of conventional p-type hole-transport and n-type electron-transport materials in an appropriate device structure can also provide an uncommon efficiency. Both strategies are essential and attractive for high-performance and low-cost full-color displays and white OLED applications. This Research Topic mainly focus on this new generation of organic light-emitting materials and devices, including design, synthesis, and characterization of light-emitting organic molecules with tunable excited states, and their structural, electrical, and photophysical properties. Contributions relating to carrier transporting materials and corresponding device engineering are also included. Two mini reviews and thirteen original research articles by recognized academic experts in their respective fields are collected in this Research Topic, which will offer a broad perspective of noble metal-free organic light emitters, including conventional fluorescent emitters, TADF emitters, HLCT emitters, exciplex emitters, aggregation-induced emission (AIE) luminogens, and their corresponding devices. We believe this eBook should attract the attention of multidisciplinary researchers in the fields of materials science, organic synthesis, and electronic device engineering, especially for those engaged in OLED-related areas.
Organic and Inorganic Light Emitting Diodes
Author: T.D. Subash
Publisher: CRC Press
ISBN: 1000889831
Category : Science
Languages : en
Pages : 222
Book Description
This book covers a comprehensive range of topics on the physical mechanisms of LEDs (light emitting diodes), scattering effects, challenges in fabrication and efficient enhancement techniques in organic and inorganic LEDs. It deals with various reliability issues in organic/inorganic LEDs like trapping and scattering effects, packaging failures, efficiency droops, irradiation effects, thermal degradation mechanisms, and thermal degradation processes. Features: Provides insights into the improvement of performance and reliability of LEDs Highlights the optical power improvement mechanisms in LEDs Covers the challenges in fabrication and packaging of LEDs Discusses pertinent failures and degradation mechanisms Includes droop minimization techniques This book is aimed at researchers and graduate students in LEDs, illumination engineering, optoelectronics, and polymer/organic materials.
Publisher: CRC Press
ISBN: 1000889831
Category : Science
Languages : en
Pages : 222
Book Description
This book covers a comprehensive range of topics on the physical mechanisms of LEDs (light emitting diodes), scattering effects, challenges in fabrication and efficient enhancement techniques in organic and inorganic LEDs. It deals with various reliability issues in organic/inorganic LEDs like trapping and scattering effects, packaging failures, efficiency droops, irradiation effects, thermal degradation mechanisms, and thermal degradation processes. Features: Provides insights into the improvement of performance and reliability of LEDs Highlights the optical power improvement mechanisms in LEDs Covers the challenges in fabrication and packaging of LEDs Discusses pertinent failures and degradation mechanisms Includes droop minimization techniques This book is aimed at researchers and graduate students in LEDs, illumination engineering, optoelectronics, and polymer/organic materials.
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes
Author: Feng Gao
Publisher: Elsevier
ISBN: 0128136472
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials.
Publisher: Elsevier
ISBN: 0128136472
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
Advanced Nanomaterials for Solar Cells and Light Emitting Diodes discusses the importance of nanomaterials as the active layers in solar cells and light emitting diodes (LEDs), along with the progress of nanomaterials as the electron and hole transporting layers. Specifically, the book reviews the use of nano-morphology of polymers, small molecules, and the organic-inorganic perovskites as the active layers in solar cells and LEDs. The design, fabrication and properties of metal-oxide-based nano-structures as electron and hole transporting layers are also reviewed. In addition, the development of plasmonic nanomaterials for solar cells and LEDs is discussed. Each topic in this book includes an overview of the materials system from principles to process. The advantages, disadvantages and related methodologies are highlighted. The book includes applications based on materials and emphasize how to improve the performance of solar cells and LEDs by the materials design, with a focus on nanomaterials.
Energy Efficiency and Renewable Energy Through Nanotechnology
Author: Ling Zang
Publisher: Springer Science & Business Media
ISBN: 0857296388
Category : Technology & Engineering
Languages : en
Pages : 937
Book Description
Reflecting the rapid growth of nanotechnology research and the potential impact of the growing energy crisis, Energy Efficiency and Renewable Energy Through Nanotechnology provides comprehensive coverage of cutting-edge research in the energy-related fields of nanoscience and nanotechnology, which aim to improve energy efficiency and the generation of renewable energy. Energy Efficiency and Renewable Energy Through Nanotechnology tightly correlates nanotechnology with energy issues in a general, comprehensive way that makes it not only suitable as a desk reference for research, but also as a knowledge resource for the non-expert general public. Readers will find Energy Efficiency and Renewable Energy Through Nanotechnology useful in a variety of ways, ranging from the creation of energy policy, to energy research development, and to education in nanotechnology and its application to energy-related problems. It can also be used as a primary or supplementary textbook for energy-related courses for advanced undergraduate and graduate students.
Publisher: Springer Science & Business Media
ISBN: 0857296388
Category : Technology & Engineering
Languages : en
Pages : 937
Book Description
Reflecting the rapid growth of nanotechnology research and the potential impact of the growing energy crisis, Energy Efficiency and Renewable Energy Through Nanotechnology provides comprehensive coverage of cutting-edge research in the energy-related fields of nanoscience and nanotechnology, which aim to improve energy efficiency and the generation of renewable energy. Energy Efficiency and Renewable Energy Through Nanotechnology tightly correlates nanotechnology with energy issues in a general, comprehensive way that makes it not only suitable as a desk reference for research, but also as a knowledge resource for the non-expert general public. Readers will find Energy Efficiency and Renewable Energy Through Nanotechnology useful in a variety of ways, ranging from the creation of energy policy, to energy research development, and to education in nanotechnology and its application to energy-related problems. It can also be used as a primary or supplementary textbook for energy-related courses for advanced undergraduate and graduate students.
Organic Solar Cells
Author: Qiquan Qiao
Publisher: CRC Press
ISBN: 1482229846
Category : Science
Languages : en
Pages : 426
Book Description
Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.
Publisher: CRC Press
ISBN: 1482229846
Category : Science
Languages : en
Pages : 426
Book Description
Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.
Organic Electronics Materials and Devices
Author: Shuichiro Ogawa
Publisher: Springer
ISBN: 4431556540
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
This book is an introductory text for graduate students, researchers in industries, and those who are just beginning to work on organic electronics materials, devices and their applications. The book includes mainly fundamental principles and theories for understanding organic electronics materials and devices, but also provides information about state-of-the-art technologies, applications and future prospects. These topics encompass physics for organic transistors, structure control technologies of polymer semiconductors, nanomaterials electronics, organic solar cells, organic electroluminescence, liquid semiconductors and dynamics for excitation, among others. This book will help researchers to be able to contribute to society with the technologies and science of organic electronics materials in the future.
Publisher: Springer
ISBN: 4431556540
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
This book is an introductory text for graduate students, researchers in industries, and those who are just beginning to work on organic electronics materials, devices and their applications. The book includes mainly fundamental principles and theories for understanding organic electronics materials and devices, but also provides information about state-of-the-art technologies, applications and future prospects. These topics encompass physics for organic transistors, structure control technologies of polymer semiconductors, nanomaterials electronics, organic solar cells, organic electroluminescence, liquid semiconductors and dynamics for excitation, among others. This book will help researchers to be able to contribute to society with the technologies and science of organic electronics materials in the future.
Advanced Nanomaterials for Light-Emitting Diodes and Solar Cells
Author: Baiquan Liu
Publisher: Frontiers Media SA
ISBN: 2889714012
Category : Science
Languages : en
Pages : 81
Book Description
Publisher: Frontiers Media SA
ISBN: 2889714012
Category : Science
Languages : en
Pages : 81
Book Description
Graphene for Flexible Lighting and Displays
Author: Tae Woo Lee
Publisher: Woodhead Publishing
ISBN: 0081024835
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Graphene for Next Generation Lighting and Displays provides readers with a comprehensive overview of graphene, flexible graphene electrodes, and graphene-based next-generation display and lighting. The book covers a wide range of information, including the basic physics of graphene and recent trends in technical developments for graphene-based flexible and stretchable light-emitting devices. In addition, it discusses future prospects and suggests further directions for research on graphene-based next-generation displays and lightings. In addition, the book includes sections on the fundamental properties of graphene, synthetic methods of graphene, preparation of graphene electrodes and composite electrodes, and doping methods for graphene electrodes. Potential applications are also addressed including graphene-based flexible electrodes, buffer layer, emitters, and graphene-based stretchable electrodes. - Reviews the most promising applications, including OLEDs, graphene-based buffer layers for LEDs, quantum dot emitters, and stretchable graphene electrodes - Describes practical approaches in modifying the properties of graphene for the purpose of optoelectronic applications
Publisher: Woodhead Publishing
ISBN: 0081024835
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Graphene for Next Generation Lighting and Displays provides readers with a comprehensive overview of graphene, flexible graphene electrodes, and graphene-based next-generation display and lighting. The book covers a wide range of information, including the basic physics of graphene and recent trends in technical developments for graphene-based flexible and stretchable light-emitting devices. In addition, it discusses future prospects and suggests further directions for research on graphene-based next-generation displays and lightings. In addition, the book includes sections on the fundamental properties of graphene, synthetic methods of graphene, preparation of graphene electrodes and composite electrodes, and doping methods for graphene electrodes. Potential applications are also addressed including graphene-based flexible electrodes, buffer layer, emitters, and graphene-based stretchable electrodes. - Reviews the most promising applications, including OLEDs, graphene-based buffer layers for LEDs, quantum dot emitters, and stretchable graphene electrodes - Describes practical approaches in modifying the properties of graphene for the purpose of optoelectronic applications