Advances in Measurements of the Properties of Aerosol Particles

Advances in Measurements of the Properties of Aerosol Particles PDF Author: Emma Tackman
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Aerosol particles are a diverse class of materials that permeate the atmosphere with implications for global climate and human health. Atmospheric aerosols are released into the environment from many sources and continue to undergo atmospheric processing which introduces further variation into particle populations. This surfeit of sources and atmospheric trajectories leads to a wide variety in the properties in aerosol particles such as composition, shape, size, morphology, and reactivity. The methods measuring properties of aerosol particles is itself an important and developing field of study with direct applications in bettering our understanding of aerosol behaviors and atmospheric chemical systems. This work presents a critical analysis of existing microscopy-based measurements and provides new methods, applications, and recommendations for improving the assessment of aerosol properties. Chemical properties of aerosol particles include aqueous particle acidity and the O:C ratio of organic constituents. A new method for measuring the internal pH of aqueous aerosol microdroplets was developed and presented here using carbon quantum dots as a pH sensitive fluorophore. This technique was validated using a complex organic mixture representing various functional groups found in atmospheric organic material. The influence of organic O:C ratio on phase separation for proxy organic/inorganic mixed aerosol particles was assessed for microdroplets and nanoparticles. For optical microscope experiments, sucrose was added to organic/inorganic mixtures to systematically increase the O:C ratio of the system and was observed to suppress phase separation. Similarly, particles made up of combinations of carboxylic acids at particular O:C ratios and inorganic salts are analyzed using TEM for size dependence of phase separation at the nanoscale. Generally, large particles are able to phase separate while small particles remain homogeneous, or well mixed, and the transition region between the two regimes was examined. TEM is used in several studies to consider aerosol particle spreading and morphology at atmospherically relevant sizes. Inorganic particles were found to spread along the surface of a substrate. Particles with an organic coating also spread on the substrate but additionally lost volume, possibly due to outgassing of residual volatile species in storage or physical deformation during the impaction process. Results were compared to measurements of the same particles suspended in a gas flow and sizing discrepancies between the two methods were found, mostly attributed to the presence of a substrate in microscope assays. Further, the influence of generation parameters on the final morphologies of particles was determined for particles made under low and high relative humidity conditions with wet and dry seed particles. Wet seeds were found to restructure due to humidity cycling and spread less on the surface than dry seeds, while wet and dry coated particles were influenced similarly by the impaction process. Wet seeded organic particles also showed a new textured morphology, emphasizing the utility of microscope measurements of individual aerosol particles.

Advances in Measurements of the Properties of Aerosol Particles

Advances in Measurements of the Properties of Aerosol Particles PDF Author: Emma Tackman
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Aerosol particles are a diverse class of materials that permeate the atmosphere with implications for global climate and human health. Atmospheric aerosols are released into the environment from many sources and continue to undergo atmospheric processing which introduces further variation into particle populations. This surfeit of sources and atmospheric trajectories leads to a wide variety in the properties in aerosol particles such as composition, shape, size, morphology, and reactivity. The methods measuring properties of aerosol particles is itself an important and developing field of study with direct applications in bettering our understanding of aerosol behaviors and atmospheric chemical systems. This work presents a critical analysis of existing microscopy-based measurements and provides new methods, applications, and recommendations for improving the assessment of aerosol properties. Chemical properties of aerosol particles include aqueous particle acidity and the O:C ratio of organic constituents. A new method for measuring the internal pH of aqueous aerosol microdroplets was developed and presented here using carbon quantum dots as a pH sensitive fluorophore. This technique was validated using a complex organic mixture representing various functional groups found in atmospheric organic material. The influence of organic O:C ratio on phase separation for proxy organic/inorganic mixed aerosol particles was assessed for microdroplets and nanoparticles. For optical microscope experiments, sucrose was added to organic/inorganic mixtures to systematically increase the O:C ratio of the system and was observed to suppress phase separation. Similarly, particles made up of combinations of carboxylic acids at particular O:C ratios and inorganic salts are analyzed using TEM for size dependence of phase separation at the nanoscale. Generally, large particles are able to phase separate while small particles remain homogeneous, or well mixed, and the transition region between the two regimes was examined. TEM is used in several studies to consider aerosol particle spreading and morphology at atmospherically relevant sizes. Inorganic particles were found to spread along the surface of a substrate. Particles with an organic coating also spread on the substrate but additionally lost volume, possibly due to outgassing of residual volatile species in storage or physical deformation during the impaction process. Results were compared to measurements of the same particles suspended in a gas flow and sizing discrepancies between the two methods were found, mostly attributed to the presence of a substrate in microscope assays. Further, the influence of generation parameters on the final morphologies of particles was determined for particles made under low and high relative humidity conditions with wet and dry seed particles. Wet seeds were found to restructure due to humidity cycling and spread less on the surface than dry seeds, while wet and dry coated particles were influenced similarly by the impaction process. Wet seeded organic particles also showed a new textured morphology, emphasizing the utility of microscope measurements of individual aerosol particles.

Aerosol Technology

Aerosol Technology PDF Author: William C. Hinds
Publisher: John Wiley & Sons
ISBN: 1119494044
Category : Technology & Engineering
Languages : en
Pages : 452

Get Book Here

Book Description
AEROSOL TECHNOLOGY An in-depth and accessible treatment of aerosol theory and its applications The Third Edition of Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles delivers a thorough and authoritative exploration of modern aerosol theory and its applications. The book offers readers a working knowledge of the topic that reflects the numerous advances that have been made across a broad spectrum of aerosol-related application areas. New updates to the popular text include treatments of nanoparticles, the health effects of atmospheric aerosols, remote sensing, bioaerosols, and low-cost sensors. Additionally, readers will benefit from insightful new discussions of modern instruments. The authors maintain a strong focus on the fundamentals of the discipline, while providing a robust overview of real-world applications of aerosol theory. New exercise problems and examples populate the book, which also includes: Thorough introductions to aerosol technology, key definitions, particle size, shape, density, and concentration, as well as the properties of gases Comprehensive explorations of uniform particle motion, particle size statistics, and straight-line acceleration and curvilinear particle motion Practical discussions of particle adhesion, Brownian motion and diffusion, thermal and radiometric forces, and filtration In-depth examinations of sampling and measurement of concentration, respiratory deposition, coagulation, condensation, evaporation, and atmospheric aerosols Perfect for senior undergraduate and junior graduate students of science and technology, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles will also earn a place in the libraries of professionals working in industrial hygiene, air pollution control, climate science, radiation protection, and environmental science.

Aerosol Technology

Aerosol Technology PDF Author: William C. Hinds
Publisher: John Wiley & Sons
ISBN: 1118591976
Category : Technology & Engineering
Languages : en
Pages : 411

Get Book Here

Book Description
The #1 guide to aerosol science and technology -now better than ever Since 1982, Aerosol Technology has been the text of choice among students and professionals who need to acquire a thorough working knowledge of modern aerosol theory and applications. Now revised to reflect the considerable advances that have been made over the past seventeen years across a broad spectrum of aerosol-related application areas - from occupational hygiene and biomedical technology to microelectronics and pollution control -this new edition includes: * A chapter on bioaerosols * New sections on resuspension, transport losses, respiratory deposition models, and fractal characterization of particles * Expanded coverage of atmospheric aerosols, including background aerosols and urban aerosols * A section on the impact of aerosols on global warming and ozone depletion. Aerosol Technology, Second Edition also features dozens of new, fully worked examples drawn from a wide range of industrial and research settings, plus new chapter-end practice problems to help readers master the material quickly.

Fine Particles

Fine Particles PDF Author: Benjamin Y.H. Liu
Publisher: Elsevier
ISBN: 0323142214
Category : Technology & Engineering
Languages : en
Pages : 852

Get Book Here

Book Description
Fine Particles: Aerosol Generation, Measurement, Sampling, and Analysis is a collection of technical papers presented at the Symposium on Fine Particles held in Minneapolis, Minnesota, on May 28-30, 1975. The symposium aims to explore the developments in instrumentation and experimental techniques for aerosol studies. This book is organized into four parts encompassing 34 chapters that focus on fine particles below about 3.5 μm in diameter. Part I presents the research and development in Europe and Japan on fine particles and aerosols, as well as the aerosol standards development work at the Particle Technology Laboratory, University of Minnesota. This part also includes calibration studies on condensation nuclei counters and the diffusion battery. Significant chapters in Part II are devoted to the common techniques for generation of aerosols of various sizes, from fine particles to monodisperse aerosols. This part further looks into the equipment limitations and problems in producing fine particle aerosols for life testing air cleaning systems and for weather modification experimentation. Part III describes the techniques and equipment used for size-selective aerosol sampling in terms of the design principles applied, the correspondence between design and performance of specific samplers, their applicability to field conditions, and their ability to satisfy sampler acceptance criteria. Part IV deals first with the methods for determination of aerosol properties, including their optical, electrical, and spectral properties. Other chapters examine the principles, mode of operation, and application of processes and instruments for aerosol studies.

Physical and Chemical Properties of Aerosols

Physical and Chemical Properties of Aerosols PDF Author: Ian Colbeck
Publisher: Springer
ISBN:
Category : Nature
Languages : en
Pages : 488

Get Book Here

Book Description
An aerosol is a suspension of fine particles in a gas, usually air, and is generally taken to include both solid and liquid particles with dimensions ranging from a few nanometres up to around 100 micrometres in diameter. Aerosol sicence is the study of the physics and chemistry of aerosol behaviour and this includes techniques of generating particles of nanometre and micrometre dimensions: size classification and measurement, transport and deposition properties: chemical properties of aerosols in the atmosphere and in industry, as well as health effects from inhalation and industrial gas cleaning technology. Aerosols have important commercial implications, e.g. pressure-packaged `aerosol' products, agricultural sprays, atmospheric visibility and high technology materials and knowledge of aerosol properties is important in a wide range of disciplines, including industrial hygiene, air pollution, medicine, agriculture, meteorology and geochemistry. Written by an international team of contributors, this book forms a timely, concise and accessible overview of aerosol science and technology. Chemists, technologists and engineers new to aerosol science will find this book an essential companion in their studies of the subject. Those more familiar with aerosols will use it as an essential source of reference.

Aerosol Measurement

Aerosol Measurement PDF Author: Pramod Kulkarni
Publisher: John Wiley & Sons
ISBN: 1118001672
Category : Science
Languages : en
Pages : 1497

Get Book Here

Book Description
Aerosol Measurement: Principles, Techniques, and Applications Third Edition is the most detailed treatment available of the latest aerosol measurement methods. Drawing on the know-how of numerous expert contributors; it provides a solid grasp of measurement fundamentals and practices a wide variety of aerosol applications. This new edition is updated to address new and developing applications of aerosol measurement, including applications in environmental health, atmospheric science, climate change, air pollution, public health, nanotechnology, particle and powder technology, pharmaceutical research and development, clean room technology (integrated circuit manufacture), and nuclear waste management.

In-Situ Measurements of Optical Properties of Atmospheric Aerosol Particles Using the Georgia Tech Laser Polar Nephelometer

In-Situ Measurements of Optical Properties of Atmospheric Aerosol Particles Using the Georgia Tech Laser Polar Nephelometer PDF Author: Gerald William Grams
Publisher:
ISBN:
Category : Atmosphere
Languages : en
Pages :

Get Book Here

Book Description


Advances in Aerosol Gas Filtration

Advances in Aerosol Gas Filtration PDF Author: Kvetoslav R. Spurny
Publisher: CRC Press
ISBN: 9780873718301
Category : Nature
Languages : en
Pages : 564

Get Book Here

Book Description
Aerosols are generally associated with damaging effects to the ozone and human health, however, some aerosols enable productions of very clean, highly dispersed materials. Advances in Aerosol Filtration is dedicated to progress in aerosol science, presenting newly developed theories, filtration models, and novel applications of aerosol gas filtration. Topics include new filtration materials, filter testing methods, electrically enhanced filtration, mechanical and chemical filter resistivity, computational models, and much more. This book examines the history and development of aerosol filtration science and also considers research needs for the future.

Aerosol Science

Aerosol Science PDF Author: Ian Colbeck
Publisher: John Wiley & Sons
ISBN: 1118675355
Category : Science
Languages : en
Pages : 522

Get Book Here

Book Description
AEROSOL SCIENCE TECHNOLOGY AND APPLICATIONS Aerosols influence many areas of our daily life. They are at the core of environmental problems such as global warming, photochemical smog and poor air quality. They can also have diverse effects on human health, where exposure occurs in both outdoor and indoor environments. However, aerosols can have beneficial effects too; the delivery of drugs to the lungs, the delivery of fuels for combustion and the production of nanomaterials all rely on aerosols. Advances in particle measurement technologies have made it possible to take advantage of rapid changes in both particle size and concentration. Likewise, aerosols can now be produced in a controlled fashion. Reviewing many technological applications together with the current scientific status of aerosol modelling and measurements, this book includes: Satellite aerosol remote sensing The effects of aerosols on climate change Air pollution and health Pharmaceutical aerosols and pulmonary drug delivery Bioaerosols and hospital infections Particle emissions from vehicles The safety of emerging nanomaterials Radioactive aerosols: tracers of atmospheric processes With the importance of this topic brought to the public's attention after the eruption of the Icelandic volcano Eyjafjallajökull, this book provides a timely, concise and accessible overview of the many facets of aerosol science.

Advances and Applications of Mass Spectral Techniques for the Characterization of Atmospheric Aerosol Particles

Advances and Applications of Mass Spectral Techniques for the Characterization of Atmospheric Aerosol Particles PDF Author: Lindsay Erighn Hatch
Publisher:
ISBN: 9781267646781
Category :
Languages : en
Pages : 172

Get Book Here

Book Description
Aerosol particles are ubiquitous in the atmosphere and induce significant impacts on human health and climate that depend on their physical and chemical properties, such as size, composition, and mixing state (chemical associations). Measurements of aerosol composition at the single-particle level are necessary to better understand these effects. Aerosol time-of-flight mass spectrometry (ATOFMS) is able to monitor the size and chemical composition of individual particles in real time. In this doctoral research, ATOFMS analysis was extended to identify new mass spectral markers and improve the potential for quantitative measurements. Development of novel instrumentation was also undertaken. Ion markers indicative of organosulfate compounds were identified in ATOFMS mass spectra collected in Atlanta, GA. In this study, the mixing state and temporal behavior of particulate organosulfate compounds were observed for the first time. Organosulfates were overwhelmingly detected in carbonaceous submicron particles and the temporal trends indicated that they likely formed by the daytime oxidation of isoprene followed by aqueous reaction with sulfate overnight. These results highlight the roles of mixing state and multi-phase reactivity on the formation of secondary organic aerosols. ATOFMS measurements of thermally-conditioned aerosol residuals obtained during the 2005 Study of Organic Aerosols in Riverside, CA were analyzed to determine the impacts of atmospheric aging on the laser desorption/ionization process. Coatings of secondary species suppressed the ionization efficiency, thereby impacting the mass spectral peak areas; however, a novel analysis method was found to correct these artifacts and produced strong agreement with collocated quantitative instrumentation. This new analysis technique was then applied to investigate the mixing-state dependence of aerosol volatility observed in Riverside. It was observed that particulate nitrate evaporated at different temperatures from different particle types (e.g., organic vs. biomass burning), which may influence the regional transport of nitrate species. ATOFMS provides important insights into size-resolved particle sources; however it heavily fragments most organic species, resulting in loss of the molecular information. Therefore, a novel chemical ionization mass spectrometer was developed to better characterize the molecular organic aerosol constituents. In particular, an ion funnel was incorporated into a home-built proton-transfer-reaction mass spectrometer. Initial characterization studies and ion simulations indicated that the ion funnel can provide high-efficiency ion transfer from the ionization region to the mass spectrometer. These results demonstrate the potential for this instrument to ultimately achieve highly sensitive analyses of organic aerosols.