Advances in Hydraulic Fracture Simulation - Dynamic and Quasi-static Analysis

Advances in Hydraulic Fracture Simulation - Dynamic and Quasi-static Analysis PDF Author: Matin Parchei Esfahani
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 170

Get Book Here

Book Description
Hydraulic fracturing (HF) is an effective technique for permeability enhancement of conventional and unconventional reservoirs. HF is performed by injecting a fluid (usually water-based), sand, and chemicals into a formation under high pressure in order to induce damage and improve the interconnectivity of the fracture network through reopening of natural fractures and generation of new fractures. Hydraulic fracturing is a complex multi-physics process that involves the coupling of several physical phenomena, such as rock deformation, fluid flow, fracture propagation, etc. The simulation of HF is complex due to its coupled multi-physics nature. Despite recent advancements in HF simulations, relatively little attention has been given to improving the coupling algorithms used in these simulations. In many cases, sequential coupling algorithms are preferred over the monolithic approach due to the availability of independent solvers for each subproblem (e.g., independent deformable solid and fluid flow models), and the costliness of the monolithic approach. However, the available sequential algorithms widely used in the simulation of hydraulic fractures are known to lack robustness and encounter stability and/or convergence issues. The unavailability of efficient and effective sequential algorithms for the simulation of hydraulic fractures is currently one of the major gaps in the literature. The majority of hydraulic fracture models use quasi-static analysis, which neglects the inertial effects that are important when injection rates are very high or vary quickly in time, as during stimulation by pressure pulsing. The application of the dynamic models currently available in the literature is mainly limited to the dynamic simulations of acoustic wave emissions in porous media. Very few studies, until now, have considered dynamic simulation of fluid driven fractures. Hence, the unavailability of reliable dynamic hydraulic fracture models is another major gap in the hydraulic fracture literature. This thesis has three objectives. The first objective is to develop a stable sequential coupling algorithm for enforcing the hydro-mechanical coupling in the simulation of hydraulic fractures. The focus of the first objective is on the sequential algorithms that solve the mechanics subproblem first, in each iteration. This objective is realized in Chapter 2 of the thesis. The split is derived using the analogy of the undrained split in poromechanics; hence the new algorithm is named the \emph{undrained HF split}. The undrained HF split converges to the solution of the fully coupled (monolithic) approach. It's also shown to be stable and convergent in applications in which the conventional coupling strategies fail to converge due to oscillations. The convergence of the undrained HF split is generally slower than the fully coupled model. The second objective of the thesis is to develop a stable sequential coupling algorithm that solves the fluid flow subproblem first, in each iteration. This objective is addressed in Chapter 3 of the thesis. This algorithm is derived using the analogy of the fixed stress split in poromechanics and, therefore, named the \emph{fixed stress HF split}. The fixed stress HF split is stable and shown to converge to the solution of the fully coupled model. The algorithm is shown to successfully simulate nonplanar hydraulic fracture trajectories in flow rate controlled hydraulic fracture simulations. The third objective of the thesis is to develop a dynamic hydraulic fracture model for investigating the effect of rapidly changing loads, such as those caused by pressure pulses, on the dynamic propagation of hydraulic fractures. Chapter 4 of the thesis addresses this objective. A dynamic HF model with leak-off is developed in Chapter 4. The dynamic HF model is used to study wellbore stimulation by high rate and high amplitude pressure pulses and investigate the effect of formation porosity and permeability on the dynamic response of the system. It is observed that generally, formations with higher porosity and permeability generate shorter and wider hydraulic fractures. The dynamic response of hydraulic fractures is found to contain a phase lag with respect to the applied pressure pulse, which slightly increases with an increase in the porosity and permeability of the formation. Fracture closure mechanism is directly affected by the rate of fluid leak-off from hydraulic fractures, which also depends on the porosity and permeability of the formation. Unique acoustic wave emission patterns are observed from the response of hydraulic fracture and wellbore system to the pressure pulse at each stage of the stimulation.

Advances in Hydraulic Fracture Simulation - Dynamic and Quasi-static Analysis

Advances in Hydraulic Fracture Simulation - Dynamic and Quasi-static Analysis PDF Author: Matin Parchei Esfahani
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 170

Get Book Here

Book Description
Hydraulic fracturing (HF) is an effective technique for permeability enhancement of conventional and unconventional reservoirs. HF is performed by injecting a fluid (usually water-based), sand, and chemicals into a formation under high pressure in order to induce damage and improve the interconnectivity of the fracture network through reopening of natural fractures and generation of new fractures. Hydraulic fracturing is a complex multi-physics process that involves the coupling of several physical phenomena, such as rock deformation, fluid flow, fracture propagation, etc. The simulation of HF is complex due to its coupled multi-physics nature. Despite recent advancements in HF simulations, relatively little attention has been given to improving the coupling algorithms used in these simulations. In many cases, sequential coupling algorithms are preferred over the monolithic approach due to the availability of independent solvers for each subproblem (e.g., independent deformable solid and fluid flow models), and the costliness of the monolithic approach. However, the available sequential algorithms widely used in the simulation of hydraulic fractures are known to lack robustness and encounter stability and/or convergence issues. The unavailability of efficient and effective sequential algorithms for the simulation of hydraulic fractures is currently one of the major gaps in the literature. The majority of hydraulic fracture models use quasi-static analysis, which neglects the inertial effects that are important when injection rates are very high or vary quickly in time, as during stimulation by pressure pulsing. The application of the dynamic models currently available in the literature is mainly limited to the dynamic simulations of acoustic wave emissions in porous media. Very few studies, until now, have considered dynamic simulation of fluid driven fractures. Hence, the unavailability of reliable dynamic hydraulic fracture models is another major gap in the hydraulic fracture literature. This thesis has three objectives. The first objective is to develop a stable sequential coupling algorithm for enforcing the hydro-mechanical coupling in the simulation of hydraulic fractures. The focus of the first objective is on the sequential algorithms that solve the mechanics subproblem first, in each iteration. This objective is realized in Chapter 2 of the thesis. The split is derived using the analogy of the undrained split in poromechanics; hence the new algorithm is named the \emph{undrained HF split}. The undrained HF split converges to the solution of the fully coupled (monolithic) approach. It's also shown to be stable and convergent in applications in which the conventional coupling strategies fail to converge due to oscillations. The convergence of the undrained HF split is generally slower than the fully coupled model. The second objective of the thesis is to develop a stable sequential coupling algorithm that solves the fluid flow subproblem first, in each iteration. This objective is addressed in Chapter 3 of the thesis. This algorithm is derived using the analogy of the fixed stress split in poromechanics and, therefore, named the \emph{fixed stress HF split}. The fixed stress HF split is stable and shown to converge to the solution of the fully coupled model. The algorithm is shown to successfully simulate nonplanar hydraulic fracture trajectories in flow rate controlled hydraulic fracture simulations. The third objective of the thesis is to develop a dynamic hydraulic fracture model for investigating the effect of rapidly changing loads, such as those caused by pressure pulses, on the dynamic propagation of hydraulic fractures. Chapter 4 of the thesis addresses this objective. A dynamic HF model with leak-off is developed in Chapter 4. The dynamic HF model is used to study wellbore stimulation by high rate and high amplitude pressure pulses and investigate the effect of formation porosity and permeability on the dynamic response of the system. It is observed that generally, formations with higher porosity and permeability generate shorter and wider hydraulic fractures. The dynamic response of hydraulic fractures is found to contain a phase lag with respect to the applied pressure pulse, which slightly increases with an increase in the porosity and permeability of the formation. Fracture closure mechanism is directly affected by the rate of fluid leak-off from hydraulic fractures, which also depends on the porosity and permeability of the formation. Unique acoustic wave emission patterns are observed from the response of hydraulic fracture and wellbore system to the pressure pulse at each stage of the stimulation.

Porous Rock Fracture Mechanics

Porous Rock Fracture Mechanics PDF Author: Amir Shojaei
Publisher: Woodhead Publishing
ISBN: 9780081007815
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Porous Rock Failure Mechanics: Hydraulic Fracturing, Drilling and Structural Engineering focuses on the fracture mechanics of porous rocks and modern simulation techniques for progressive quasi-static and dynamic fractures. The topics covered in this volume include a wide range of academic and industrial applications, including petroleum, mining, and civil engineering. Chapters focus on advanced topics in the field of rock's fracture mechanics and address theoretical concepts, experimental characterization, numerical simulation techniques, and their applications as appropriate. Each chapter reflects the current state-of-the-art in terms of the modern use of fracture simulation in industrial and academic sectors. Some of the major contributions in this volume include, but are not limited to: anisotropic elasto-plastic deformation mechanisms in fluid saturated porous rocks, dynamics of fluids transport in fractured rocks and simulation techniques, fracture mechanics and simulation techniques in porous rocks, fluid-structure interaction in hydraulic driven fractures, advanced numerical techniques for simulation of progressive fracture, including multiscale modeling, and micromechanical approaches for porous rocks, and quasi-static versus dynamic fractures in porous rocks. This book will serve as an important resource for petroleum, geomechanics, drilling and structural engineers, R&D managers in industry and academia.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Category : Technology & Engineering
Languages : en
Pages : 568

Get Book Here

Book Description
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs. - Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods - Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics - Provides today's petroleum engineer with model validation tools backed by real-world case studies

Static Conceptual Fracture Modeling

Static Conceptual Fracture Modeling PDF Author: Ronald A. Nelson
Publisher: John Wiley & Sons
ISBN: 1119596955
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
Modelling of flow in naturally fractured reservoirs is quickly becoming mandatory in all phases of oil and gas exploration and production. Creation of a Static Conceptual Fracture Model (SCFM) is needed as input to create flow simulations for today and for prediction of flow into the future. Unfortunately, the computer modelers tasked with constructing the gridded fracture model are often not well versed in natural fracture characterization and are often forced to make quick decisions as to the input required by the software used to create these models. Static Conceptual Fracture Modelling: Preparing for Simulation and Development describes all the fracture and reservoir parameters needed to create the fracture database for effective modelling and how to generate the data and parameter distributions. The material covered in this volume highlights not only natural fracture system quantification and formatting, but also describes best practices for managing technical teams charged with creating the SCFM. This book will become a must on the shelf for all reservoir modelers.

Dynamic Fracture Mechanics

Dynamic Fracture Mechanics PDF Author: Arun Shukla
Publisher: World Scientific
ISBN: 9812773320
Category : Technology & Engineering
Languages : en
Pages : 374

Get Book Here

Book Description
Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.

Discrete Fracture Network Modeling of Hydraulic Stimulation

Discrete Fracture Network Modeling of Hydraulic Stimulation PDF Author: Mark W. McClure
Publisher: Springer Science & Business Media
ISBN: 3319003836
Category : Technology & Engineering
Languages : en
Pages : 96

Get Book Here

Book Description
Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Author: Xinpu Shen
Publisher: CRC Press
ISBN: 1351796291
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing

Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing PDF Author: Endrina Rivas
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Hydraulic fracturing is a stimulation technique in which fluid is injected at high pressure into low-permeability reservoirs to create a fracture network for enhanced production of oil and gas. It is the primary purpose of hydraulic fracturing to enhance well production. The three main mechanisms during hydraulic fracturing for oil and gas production which largely impact the reservoir production are: (1) fracture propagation during initial pad fluid injection, which defines the extent of the fracture; (2) fracture propagation during injection of proppant slurry (fluid mixed with granular material), creating a propped reservoir zone; and (3) shear dilation of natural fractures surrounding the hydraulically fractured zone, creating a broader stimulated zone. The thesis has three objectives that support the simulation of mechanisms that lead to enhanced production of a hydraulically-fractured reservoir. The first objective is to develop a numerical model for the simulation of the mechanical deformation and shear dilation of naturally fractured rock masses. In this work, a two-dimensional model for the simulation of discrete fracture networks (DFN) is developed using the extended finite element method (XFEM), in which the mesh does not conform to the natural fracture network. The model incorporates contact, cohesion, and friction between blocks of rock. Shear dilation is an important mechanism impacting the overall nonlinear response of naturally fractured rock masses and is also included in the model--physics previously not simulated within an XFEM context. Here, shear dilation is modeled through a linear dilation model, capped by a dilation limiting displacement. Highly nonlinear problems involving multiple joint sets are investigated within a quasi-static context. An explicit scheme is used in conjunction with the dynamic relaxation technique to obtain equilibrium solutions in the face of the nonlinear constitutive models from contact, cohesion, friction, and dilation. The numerical implementation is verified and its convergence illustrated using a shear test and a biaxial test. The model is then applied to the practical problem of the stability of a slope of fractured rock. The second objective is to develop a numerical model for the simulation of proppant transport through planar fractures. This work presents the numerical methodology for simulation of proppant transport through a hydraulic fracture using the finite volume method. Proppant models commonly used in the hydraulic fracturing literature solve the linearized advection equation; this work presents solution methods for the nonlinear form of the proppant flux equation. The complexities of solving the nonlinear and heterogeneous hyperbolic advection equation that governs proppant transport are tackled, particularly handling shock waves that are generated due to the nonlinear flux function and the spatially-varying width and pressure gradient along the fracture. A critical time step is derived for the proppant transport problem solved using an explicit solution strategy. Additionally, a predictor-corrector algorithm is developed to constrain the proppant from exceeding the physically admissible range. The model can capture the mechanisms of proppant bridging occurring in sections of narrow fracture width, tip screen-out occurring when fractures become saturated with proppant, and flushing of proppant into new fracture segments. The results are verified by comparison with characteristic solutions and the model is used to simulate proppant transport through a KGD fracture. The final objective is to develop a numerical model for the simulation of proppant transport through propagating non-planar fractures. This work presents the first monolithic coupled numerical model for simulating proppant transport through a propagating hydraulic fracture. A fracture is propagated through a two-dimensional domain, driven by the flow of a proppant-laden slurry. Modeling of the slurry flow includes the effects of proppant bridging and the subsequent flow of fracturing fluid through the packed proppant pack. This allows for the simulation of a tip screen-out, a phenomenon in which there is a high degree of physical interaction between the rock deformation, fluid flow, and proppant transport. Tip screen-out also leads to shock wave formation in the solution. Numerical implementation of the model is verified and the model is then used to simulate a tip screen-out in both planar and non-planar fractures. An analysis of the fracture aperture, fluid pressure, and proppant concentration profiles throughout the simulation is performed for three different coupling schemes: monolithic, sequential, and loose coupling. It is demonstrated that even with time step refinement, the loosely-coupled scheme fails to converge to the same results as the monolithic and sequential schemes. The monolithic and sequential algorithms yield the same solution up to the onset of a tip screen-out, after which the sequential scheme fails to converge. The monolithic scheme is shown to be more efficient than the sequential algorithm (requiring fewer iterations) and has comparable computational cost to the loose coupling algorithm. Thus, the monolithic scheme is shown to be optimal in terms of computational efficiency, robustness, and accuracy. In addition to this finding, a robust and more efficient algorithm for injection-rate controlled hydraulic fracturing simulation based on global mass conservation is presented in the thesis.

Rock Mechanics

Rock Mechanics PDF Author: Barry H.G. Brady
Publisher: Springer Science & Business Media
ISBN: 9401581290
Category : Science
Languages : en
Pages : 584

Get Book Here

Book Description
This new edition has been completely revised to reflect the notable innovations in mining engineering and the remarkable developments in the science of rock mechanics and the practice of rock angineering taht have taken place over the last two decades. Although "Rock Mechanics for Underground Mining" addresses many of the rock mechanics issues that arise in underground mining engineering, it is not a text exclusively for mining applications. Based on extensive professional research and teaching experience, this book will provide an authoratative and comprehensive text for final year undergraduates and commencing postgraduate stydents. For profesional practitioners, not only will it be of interests to mining and geological engineers, but also to civil engineers, structural mining geologists and geophysicists as a standard work for professional reference purposes.

Hydraulic Fracturing in Unconventional Reservoirs

Hydraulic Fracturing in Unconventional Reservoirs PDF Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
ISBN: 0128176660
Category : Technology & Engineering
Languages : en
Pages : 636

Get Book Here

Book Description
Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing