Advances in Data Analysis, Data Handling and Business Intelligence

Advances in Data Analysis, Data Handling and Business Intelligence PDF Author: Andreas Fink
Publisher: Springer Science & Business Media
ISBN: 364201044X
Category : Computers
Languages : en
Pages : 767

Get Book Here

Book Description
Data Analysis, Data Handling and Business Intelligence are research areas at the intersection of computer science, artificial intelligence, mathematics, and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as in marketing, finance, economics, engineering, linguistics, archaeology, musicology, medical science, and biology. This volume contains the revised versions of selected papers presented during the 32nd Annual Conference of the German Classification Society (Gesellschaft für Klassifikation, GfKl). The conference, which was organized in cooperation with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC), was hosted by Helmut-Schmidt-University, Hamburg, Germany, in July 2008.

Advances in Data Analysis, Data Handling and Business Intelligence

Advances in Data Analysis, Data Handling and Business Intelligence PDF Author: Andreas Fink
Publisher: Springer Science & Business Media
ISBN: 364201044X
Category : Computers
Languages : en
Pages : 767

Get Book Here

Book Description
Data Analysis, Data Handling and Business Intelligence are research areas at the intersection of computer science, artificial intelligence, mathematics, and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as in marketing, finance, economics, engineering, linguistics, archaeology, musicology, medical science, and biology. This volume contains the revised versions of selected papers presented during the 32nd Annual Conference of the German Classification Society (Gesellschaft für Klassifikation, GfKl). The conference, which was organized in cooperation with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC), was hosted by Helmut-Schmidt-University, Hamburg, Germany, in July 2008.

Advances in Analytics and Applications

Advances in Analytics and Applications PDF Author: Arnab Kumar Laha
Publisher: Springer
ISBN: 9811312087
Category : Business & Economics
Languages : en
Pages : 289

Get Book Here

Book Description
This book includes selected papers submitted to the ICADABAI-2017 conference, offering an overview of the new methodologies and presenting innovative applications that are of interest to both academicians and practitioners working in the area of analytics. It discusses predictive analytics applications, machine learning applications, human resource analytics, operations analytics, analytics in finance, methodology and econometric applications. The papers in the predictive analytics applications section discuss web analytics, email marketing, customer churn prediction, retail analytics and sports analytics. The section on machine learning applications then examines healthcare analytics, insurance analytics and machine analytics using different innovative machine learning techniques. Human resource analytics addresses important issues relating to talent acquisition and employability using analytics, while a paper in the section on operations analytics describe an innovative application in oil and gas industry. The papers in the analytics in finance part discuss the use of analytical tools in banking and commodity markets, and lastly the econometric applications part presents interesting banking and insurance applications.

Recent Developments in Data Science and Business Analytics

Recent Developments in Data Science and Business Analytics PDF Author: Madjid Tavana
Publisher: Springer
ISBN: 3319727451
Category : Business & Economics
Languages : en
Pages : 494

Get Book Here

Book Description
This edited volume is brought out from the contributions of the research papers presented in the International Conference on Data Science and Business Analytics (ICDSBA- 2017), which was held during September 23-25 2017 in ChangSha, China. As we all know, the field of data science and business analytics is emerging at the intersection of the fields of mathematics, statistics, operations research, information systems, computer science and engineering. Data science and business analytics is an interdisciplinary field about processes and systems to extract knowledge or insights from data. Data science and business analytics employ techniques and theories drawn from many fields including signal processing, probability models, machine learning, statistical learning, data mining, database, data engineering, pattern recognition, visualization, descriptive analytics, predictive analytics, prescriptive analytics, uncertainty modeling, big data, data warehousing, data compression, computer programming, business intelligence, computational intelligence, and high performance computing among others. The volume contains 55 contributions from diverse areas of Data Science and Business Analytics, which has been categorized into five sections, namely: i) Marketing and Supply Chain Analytics; ii) Logistics and Operations Analytics; iii) Financial Analytics. iv) Predictive Modeling and Data Analytics; v) Communications and Information Systems Analytics. The readers shall not only receive the theoretical knowledge about this upcoming area but also cutting edge applications of this domains.

Intelligent Analytics With Advanced Multi-Industry Applications

Intelligent Analytics With Advanced Multi-Industry Applications PDF Author: Zhaohao Sun
Publisher: Engineering Science Reference
ISBN: 9781799849636
Category : Big data
Languages : en
Pages : 424

Get Book Here

Book Description
"This book conveys the foundations, technologies, thoughts, and methods of intelligent analytics with multi-industry applications to scientists, engineers, educators and business, service and management professionals, who have interest in big data, big information, big knowledge and big intelligence and wisdom, can be applied in data science, information science, and knowledge science"--

Healthcare Data Analytics and Management

Healthcare Data Analytics and Management PDF Author: Nilanjan Dey
Publisher: Academic Press
ISBN: 0128156368
Category : Science
Languages : en
Pages : 342

Get Book Here

Book Description
Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges

Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends

Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends PDF Author: Taniar, David
Publisher: IGI Global
ISBN: 1613504756
Category : Computers
Languages : en
Pages : 353

Get Book Here

Book Description
"This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.

Win with Advanced Business Analytics

Win with Advanced Business Analytics PDF Author: Jean-Paul Isson
Publisher: John Wiley & Sons
ISBN: 1118417089
Category : Business & Economics
Languages : en
Pages : 416

Get Book Here

Book Description
Plain English guidance for strategic business analytics and big data implementation In today's challenging economy, business analytics and big data have become more and more ubiquitous. While some businesses don't even know where to start, others are struggling to move from beyond basic reporting. In some instances management and executives do not see the value of analytics or have a clear understanding of business analytics vision mandate and benefits. Win with Advanced Analytics focuses on integrating multiple types of intelligence, such as web analytics, customer feedback, competitive intelligence, customer behavior, and industry intelligence into your business practice. Provides the essential concept and framework to implement business analytics Written clearly for a nontechnical audience Filled with case studies across a variety of industries Uniquely focuses on integrating multiple types of big data intelligence into your business Companies now operate on a global scale and are inundated with a large volume of data from multiple locations and sources: B2B data, B2C data, traffic data, transactional data, third party vendor data, macroeconomic data, etc. Packed with case studies from multiple countries across a variety of industries, Win with Advanced Analytics provides a comprehensive framework and applications of how to leverage business analytics/big data to outpace the competition.

Business Intelligence Strategy and Big Data Analytics

Business Intelligence Strategy and Big Data Analytics PDF Author: Steve Williams
Publisher: Morgan Kaufmann
ISBN: 0128094893
Category : Computers
Languages : en
Pages : 241

Get Book Here

Book Description
Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like "big data and "big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans

Practical Text Analytics

Practical Text Analytics PDF Author: Murugan Anandarajan
Publisher: Springer
ISBN: 3319956639
Category : Business & Economics
Languages : en
Pages : 294

Get Book Here

Book Description
This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.

Applied Advanced Analytics

Applied Advanced Analytics PDF Author: Arnab Kumar Laha
Publisher: Springer Nature
ISBN: 9813366567
Category : Business & Economics
Languages : en
Pages : 236

Get Book Here

Book Description
This book covers several new areas in the growing field of analytics with some innovative applications in different business contexts, and consists of selected presentations at the 6th IIMA International Conference on Advanced Data Analysis, Business Analytics and Intelligence. The book is conceptually divided in seven parts. The first part gives expository briefs on some topics of current academic and practitioner interests, such as data streams, binary prediction and reliability shock models. In the second part, the contributions look at artificial intelligence applications with chapters related to explainable AI, personalized search and recommendation, and customer retention management. The third part deals with credit risk analytics, with chapters on optimization of credit limits and mitigation of agricultural lending risks. In its fourth part, the book explores analytics and data mining in the retail context. In the fifth part, the book presents some applications of analytics to operations management. This part has chapters related to improvement of furnace operations, forecasting food indices and analytics for improving student learning outcomes. The sixth part has contributions related to adaptive designs in clinical trials, stochastic comparisons of systems with heterogeneous components and stacking of models. The seventh and final part contains chapters related to finance and economics topics, such as role of infrastructure and taxation on economic growth of countries and connectedness of markets with heterogenous agents, The different themes ensure that the book would be of great value to practitioners, post-graduate students, research scholars and faculty teaching advanced business analytics courses.