Author: Robert Vichnevetsky
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 588
Book Description
Advances in Computer Methods for Partial Differential Equations-VI
Author: Robert Vichnevetsky
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 588
Book Description
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 588
Book Description
Advances in Computer Methods for Partial Differential Equations
Author:
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 588
Book Description
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 588
Book Description
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Advances in Computer Methods for Partial Differential Equations-V
Author: Robert Vichnevetsky
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 580
Book Description
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 580
Book Description
Advances in Computer Methods for Partial Differential Equations-III
Author: Robert Vichnevetsky
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 464
Book Description
One Thursday Imogene wakes up with a pair of antlers growing out of her head and causes a sensation.
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 464
Book Description
One Thursday Imogene wakes up with a pair of antlers growing out of her head and causes a sensation.
Computational Partial Differential Equations
Author: Hans Petter Langtangen
Publisher: Springer Science & Business Media
ISBN: 3662011700
Category : Mathematics
Languages : en
Pages : 704
Book Description
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Publisher: Springer Science & Business Media
ISBN: 3662011700
Category : Mathematics
Languages : en
Pages : 704
Book Description
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Advances in Computer Methods for Partial Differential Equations II
Author: Robert Vichnevetsky
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 412
Book Description
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 412
Book Description
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Mathematics for Large Scale Computing
Author: Julio Diaz
Publisher: CRC Press
ISBN: 1000657639
Category : Mathematics
Languages : en
Pages : 362
Book Description
During recent years a great deal of interest has been devoted to large scale computing applications. This has occurred in great part because of the introduction of advanced high performance computer architectures. The book contains survey articles as well as chapters on specific research applications, development and analysis of numerical algorithms, and performance evaluation of algorithms on advanced architectures. The effect of specialized architectural features on the performance of large scale computation is also considered by several authors. Several areas of applications are represented, including the numerical solution of partial differential equations, iterative techniques for large structured problems, the numerical solution of boundary value problems for ordinary differential equations, numerical optimization, and numerical quadrature. Mathematical issues in computer architecture are also presented, including the description of grey codes for generalized hypercubes. The results presented in this volume give, in our opinion, a representative picture of today’s state of the art in several aspects of large scale computing.
Publisher: CRC Press
ISBN: 1000657639
Category : Mathematics
Languages : en
Pages : 362
Book Description
During recent years a great deal of interest has been devoted to large scale computing applications. This has occurred in great part because of the introduction of advanced high performance computer architectures. The book contains survey articles as well as chapters on specific research applications, development and analysis of numerical algorithms, and performance evaluation of algorithms on advanced architectures. The effect of specialized architectural features on the performance of large scale computation is also considered by several authors. Several areas of applications are represented, including the numerical solution of partial differential equations, iterative techniques for large structured problems, the numerical solution of boundary value problems for ordinary differential equations, numerical optimization, and numerical quadrature. Mathematical issues in computer architecture are also presented, including the description of grey codes for generalized hypercubes. The results presented in this volume give, in our opinion, a representative picture of today’s state of the art in several aspects of large scale computing.
Variational Techniques for Elliptic Partial Differential Equations
Author: Francisco J. Sayas
Publisher: CRC Press
ISBN: 0429016204
Category : Mathematics
Languages : en
Pages : 515
Book Description
Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems. Features A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc. A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics
Publisher: CRC Press
ISBN: 0429016204
Category : Mathematics
Languages : en
Pages : 515
Book Description
Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems. Features A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc. A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics