Author: Stephen Siklos
Publisher:
ISBN: 9781783747764
Category : Mathematics
Languages : en
Pages : 188
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Advanced Problems in Mathematics
Author: Stephen Siklos
Publisher:
ISBN: 9781783747764
Category : Mathematics
Languages : en
Pages : 188
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Publisher:
ISBN: 9781783747764
Category : Mathematics
Languages : en
Pages : 188
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Advanced Problems in Mathematics: Preparing for University
Author: Stephen Siklos
Publisher: Open Book Publishers
ISBN: 1783747773
Category : Mathematics
Languages : en
Pages : 186
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader’s attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Publisher: Open Book Publishers
ISBN: 1783747773
Category : Mathematics
Languages : en
Pages : 186
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader’s attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Challenging Problems in Algebra
Author: Alfred S. Posamentier
Publisher: Courier Corporation
ISBN: 0486131548
Category : Mathematics
Languages : en
Pages : 296
Book Description
Over 300 unusual problems, ranging from easy to difficult, involving equations and inequalities, Diophantine equations, number theory, quadratic equations, logarithms, more. Detailed solutions, as well as brief answers, for all problems are provided.
Publisher: Courier Corporation
ISBN: 0486131548
Category : Mathematics
Languages : en
Pages : 296
Book Description
Over 300 unusual problems, ranging from easy to difficult, involving equations and inequalities, Diophantine equations, number theory, quadratic equations, logarithms, more. Detailed solutions, as well as brief answers, for all problems are provided.
Advanced Problems in Core Mathematics
Author: Stephen Siklos
Publisher:
ISBN: 9781501075636
Category :
Languages : en
Pages : 162
Book Description
This booklet is intended to help you to prepare for STEP examinations. It should also be useful aspreparation for any undergraduate mathematics course, even if you do not plan to take STEP.The questions are all based on recent STEP questions. I chosethe questions either because they are'nice' - in the sense that you should get a lot of pleasure fromtackling them - or because I felt Ihad something interesting to say about them. In this booklet, I have restricted myself (reluctantly)to the syllabus for Papers I and II, which is the A-level core (i.e. C1 to C4) with a few additions.This material should be familiar to you if you are taking the International Baccalaureate, ScottishAdvanced Highers or other similar courses.
Publisher:
ISBN: 9781501075636
Category :
Languages : en
Pages : 162
Book Description
This booklet is intended to help you to prepare for STEP examinations. It should also be useful aspreparation for any undergraduate mathematics course, even if you do not plan to take STEP.The questions are all based on recent STEP questions. I chosethe questions either because they are'nice' - in the sense that you should get a lot of pleasure fromtackling them - or because I felt Ihad something interesting to say about them. In this booklet, I have restricted myself (reluctantly)to the syllabus for Papers I and II, which is the A-level core (i.e. C1 to C4) with a few additions.This material should be familiar to you if you are taking the International Baccalaureate, ScottishAdvanced Highers or other similar courses.
A Discrete Transition to Advanced Mathematics
Author: Bettina Richmond
Publisher: American Mathematical Soc.
ISBN: 0821847899
Category : Mathematics
Languages : en
Pages : 434
Book Description
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.
Publisher: American Mathematical Soc.
ISBN: 0821847899
Category : Mathematics
Languages : en
Pages : 434
Book Description
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.
First Steps for Math Olympians
Author: J. Douglas Faires
Publisher: MAA
ISBN: 9780883858240
Category : Mathematics
Languages : en
Pages : 344
Book Description
A major aspect of mathematical training and its benefit to society is the ability to use logic to solve problems. The American Mathematics Competitions have been given for more than fifty years to millions of students. This book considers the basic ideas behind the solutions to the majority of these problems, and presents examples and exercises from past exams to illustrate the concepts. Anyone preparing for the Mathematical Olympiads will find many useful ideas here, but people generally interested in logical problem solving should also find the problems and their solutions stimulating. The book can be used either for self-study or as topic-oriented material and samples of problems for practice exams. Useful reading for anyone who enjoys solving mathematical problems, and equally valuable for educators or parents who have children with mathematical interest and ability.
Publisher: MAA
ISBN: 9780883858240
Category : Mathematics
Languages : en
Pages : 344
Book Description
A major aspect of mathematical training and its benefit to society is the ability to use logic to solve problems. The American Mathematics Competitions have been given for more than fifty years to millions of students. This book considers the basic ideas behind the solutions to the majority of these problems, and presents examples and exercises from past exams to illustrate the concepts. Anyone preparing for the Mathematical Olympiads will find many useful ideas here, but people generally interested in logical problem solving should also find the problems and their solutions stimulating. The book can be used either for self-study or as topic-oriented material and samples of problems for practice exams. Useful reading for anyone who enjoys solving mathematical problems, and equally valuable for educators or parents who have children with mathematical interest and ability.
Excursions in Classical Analysis
Author: Hongwei Chen
Publisher: American Mathematical Soc.
ISBN: 0883859351
Category : Mathematics
Languages : en
Pages : 317
Book Description
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.
Publisher: American Mathematical Soc.
ISBN: 0883859351
Category : Mathematics
Languages : en
Pages : 317
Book Description
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.
Challenging Problems in Geometry
Author: Alfred S. Posamentier
Publisher: Courier Corporation
ISBN: 0486134865
Category : Mathematics
Languages : en
Pages : 275
Book Description
Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.
Publisher: Courier Corporation
ISBN: 0486134865
Category : Mathematics
Languages : en
Pages : 275
Book Description
Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.
HIGHER ALGEBRA
Author: Hall & Knight
Publisher: Arihant Publications India limited
ISBN: 935176253X
Category : Study Aids
Languages : en
Pages : 577
Book Description
The Classic Texts Series is the only of its kind selection of classic pieces of work that started off as bestseller and continues to be the bestseller even today. These classic texts have been designed so as to work as elementary textbooks which play a crucial role in building the concepts from scratch as in-depth knowledge of concepts is necessary for students preparing for various entrance exams.The present book on Higher Algebrapresents all the elements of Higher Algebra in a single book meant to work as textbook for the students beginning their preparation of the varied aspects covered under Higher Algebra. The present book has been divided into 35 chapters namely Ratio, Proportion, Variation, Arithmetical Progression, Geometrical Progression, Harmonical Progression Theorems Connected with The Progression, Scales of Notation, Surds & Imaginary Quantities, The Theory of Quadratic Equations, Miscellaneous Equations, Permutations & Combinations, Mathematical Induction, Binomial Theorem Positive Integral Index, Binomial Theorem, Any Index, Multinational Theorem, Logarithms, Exponential & Logarithmic Series, Interest & Annuities, Inequalities, Limiting Values & Vanishing Fractions, Convergency&Divergency of Series, Undetermined Coefficients, Partial Fractions, Recurring Series, Continued Fractions, Recurring Series, Continued Fractions, Indeterminate Equations of the First Degree, Recurring Continued Fractions, Indeterminate Equations of the Second Degree, Summation of Series, Theory of Numbers, The General Theory of Continued Fractions, Probability, Determinants, Miscellaneous Theorems & Examples and Theory of Equations, each subdivided into number of topics. The first few chapters in the book have been devoted to a fuller discussion of Ratio, Proportions, Variation and the Progressions. Both the theoretical text as well as examples have been treated minutely which will help in better understanding of the concepts covered in the book. Theoretical explanation of the concepts in points has been provided at the beginning of each chapter. At the end of each chapter, unsolved practice exercises have been provided to help aspirants revise the concepts discussed in the chapter. At the end of chapterwise study, miscellaneous examples have also been given along with answers and solutions to the unsolved examples covered in each chapter. All the relevant theorems covered under the syllabi of Higher Algebra have also been covered in the detail in this book.As the book covers the whole syllabi of Higher Algebra in detail along with ample number of solved examples, it for sure will help the students perfect the varied concepts covered under the Higher Algebra section.
Publisher: Arihant Publications India limited
ISBN: 935176253X
Category : Study Aids
Languages : en
Pages : 577
Book Description
The Classic Texts Series is the only of its kind selection of classic pieces of work that started off as bestseller and continues to be the bestseller even today. These classic texts have been designed so as to work as elementary textbooks which play a crucial role in building the concepts from scratch as in-depth knowledge of concepts is necessary for students preparing for various entrance exams.The present book on Higher Algebrapresents all the elements of Higher Algebra in a single book meant to work as textbook for the students beginning their preparation of the varied aspects covered under Higher Algebra. The present book has been divided into 35 chapters namely Ratio, Proportion, Variation, Arithmetical Progression, Geometrical Progression, Harmonical Progression Theorems Connected with The Progression, Scales of Notation, Surds & Imaginary Quantities, The Theory of Quadratic Equations, Miscellaneous Equations, Permutations & Combinations, Mathematical Induction, Binomial Theorem Positive Integral Index, Binomial Theorem, Any Index, Multinational Theorem, Logarithms, Exponential & Logarithmic Series, Interest & Annuities, Inequalities, Limiting Values & Vanishing Fractions, Convergency&Divergency of Series, Undetermined Coefficients, Partial Fractions, Recurring Series, Continued Fractions, Recurring Series, Continued Fractions, Indeterminate Equations of the First Degree, Recurring Continued Fractions, Indeterminate Equations of the Second Degree, Summation of Series, Theory of Numbers, The General Theory of Continued Fractions, Probability, Determinants, Miscellaneous Theorems & Examples and Theory of Equations, each subdivided into number of topics. The first few chapters in the book have been devoted to a fuller discussion of Ratio, Proportions, Variation and the Progressions. Both the theoretical text as well as examples have been treated minutely which will help in better understanding of the concepts covered in the book. Theoretical explanation of the concepts in points has been provided at the beginning of each chapter. At the end of each chapter, unsolved practice exercises have been provided to help aspirants revise the concepts discussed in the chapter. At the end of chapterwise study, miscellaneous examples have also been given along with answers and solutions to the unsolved examples covered in each chapter. All the relevant theorems covered under the syllabi of Higher Algebra have also been covered in the detail in this book.As the book covers the whole syllabi of Higher Algebra in detail along with ample number of solved examples, it for sure will help the students perfect the varied concepts covered under the Higher Algebra section.
Problems in Abstract Algebra
Author: A. R. Wadsworth
Publisher: American Mathematical Soc.
ISBN: 1470435837
Category : Mathematics
Languages : en
Pages : 290
Book Description
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Publisher: American Mathematical Soc.
ISBN: 1470435837
Category : Mathematics
Languages : en
Pages : 290
Book Description
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.