Author: Atul Tiwari
Publisher: John Wiley & Sons
ISBN: 1119084490
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.
Applied Nanoindentation in Advanced Materials
Author: Atul Tiwari
Publisher: John Wiley & Sons
ISBN: 1119084490
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.
Publisher: John Wiley & Sons
ISBN: 1119084490
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.
Nanoindentation
Author: Anthony C. Fischer-Cripps
Publisher: Springer Science & Business Media
ISBN: 1475759436
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
This new edition of Nanoindentation includes a dedicated chapter on thin films, new material on dynamic analysis and creep, accounts of recent research, and three new appendices on nonlinear least squares fitting, frequently asked questions, and specifications for a nanoindentation instrument. Nanoindentation Second Edition is intended for those who are entering the field for the first time and to act as a reference for those already conversant with the technique.
Publisher: Springer Science & Business Media
ISBN: 1475759436
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
This new edition of Nanoindentation includes a dedicated chapter on thin films, new material on dynamic analysis and creep, accounts of recent research, and three new appendices on nonlinear least squares fitting, frequently asked questions, and specifications for a nanoindentation instrument. Nanoindentation Second Edition is intended for those who are entering the field for the first time and to act as a reference for those already conversant with the technique.
Handbook of Mechanics of Materials
Author: Siegfried Schmauder
Publisher: Springer
ISBN: 9789811068836
Category : Science
Languages : en
Pages : 0
Book Description
This book provides a comprehensive reference for the studies of mechanical properties of materials over multiple length and time scales. The topics include nanomechanics, micromechanics, continuum mechanics, mechanical property measurements, and materials design. The handbook employs a consistent and systematic approach offering readers a user friendly reference ideal for frequent consultation. It is appropriate for an audience at of graduate students, faculties, researchers, and professionals in the fields of Materials Science, Mechanical Engineering, Civil Engineering, Engineering Mechanics, and Aerospace Engineering.
Publisher: Springer
ISBN: 9789811068836
Category : Science
Languages : en
Pages : 0
Book Description
This book provides a comprehensive reference for the studies of mechanical properties of materials over multiple length and time scales. The topics include nanomechanics, micromechanics, continuum mechanics, mechanical property measurements, and materials design. The handbook employs a consistent and systematic approach offering readers a user friendly reference ideal for frequent consultation. It is appropriate for an audience at of graduate students, faculties, researchers, and professionals in the fields of Materials Science, Mechanical Engineering, Civil Engineering, Engineering Mechanics, and Aerospace Engineering.
Nanoindentation in Materials Science
Author: Jiri Nemecek
Publisher: BoD – Books on Demand
ISBN: 9535108026
Category : Science
Languages : en
Pages : 323
Book Description
Nanotechnologies have already attracted massive interest in multiple fields of science and industry. In the past decades, we have witnessed the progress in micro-level experimental techniques that revolutionize the material science. Designing new materials based on the knowledge of mechanics of their building blocks and microstructure manipulations at nanometer scale have become a reality. Nanoindentation, as a leading micro-level mechanical testing technique, has attracted wide attention in numerous research fields and applications. Nowadays, an extensive variety of testing areas ranging from classical thin coatings in machinery engineering, electronics and composites to far fields of civil engineering, biomechanics, implantology or even agriculture can be covered with this universal testing tool. The book aims to be a walk through achievements in some of the distant fields and to give a brief overview of the current frontiers in nanoindentation. Although it is not possible to cover the whole width of the possible themes in one book, it is believed that the reader will benefit from the topics variety and the book will serve as a useful source of literature references.
Publisher: BoD – Books on Demand
ISBN: 9535108026
Category : Science
Languages : en
Pages : 323
Book Description
Nanotechnologies have already attracted massive interest in multiple fields of science and industry. In the past decades, we have witnessed the progress in micro-level experimental techniques that revolutionize the material science. Designing new materials based on the knowledge of mechanics of their building blocks and microstructure manipulations at nanometer scale have become a reality. Nanoindentation, as a leading micro-level mechanical testing technique, has attracted wide attention in numerous research fields and applications. Nowadays, an extensive variety of testing areas ranging from classical thin coatings in machinery engineering, electronics and composites to far fields of civil engineering, biomechanics, implantology or even agriculture can be covered with this universal testing tool. The book aims to be a walk through achievements in some of the distant fields and to give a brief overview of the current frontiers in nanoindentation. Although it is not possible to cover the whole width of the possible themes in one book, it is believed that the reader will benefit from the topics variety and the book will serve as a useful source of literature references.
Crystal Indentation Hardness
Author: Ronald W. Armstrong
Publisher: MDPI
ISBN: 3038429678
Category : Science
Languages : en
Pages : 335
Book Description
This book is a printed edition of the Special Issue "Crystal Indentation Hardness" that was published in Crystals
Publisher: MDPI
ISBN: 3038429678
Category : Science
Languages : en
Pages : 335
Book Description
This book is a printed edition of the Special Issue "Crystal Indentation Hardness" that was published in Crystals
CIRP Encyclopedia of Production Engineering
Author: The International Academy for Produ
Publisher: Springer
ISBN: 9783642206160
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The CIRP Encyclopedia covers the state-of-art of advanced technologies, methods and models for production, production engineering and logistics. While the technological and operational aspects are in the focus, economical aspects are addressed too. The entries for a wide variety of terms were reviewed by the CIRP-Community, representing the highest standards in research. Thus, the content is not only evaluated internationally on a high scientific level but also reflects very recent developments.
Publisher: Springer
ISBN: 9783642206160
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The CIRP Encyclopedia covers the state-of-art of advanced technologies, methods and models for production, production engineering and logistics. While the technological and operational aspects are in the focus, economical aspects are addressed too. The entries for a wide variety of terms were reviewed by the CIRP-Community, representing the highest standards in research. Thus, the content is not only evaluated internationally on a high scientific level but also reflects very recent developments.
Introduction to Materials for Advanced Energy Systems
Author: Colin Tong
Publisher: Springer
ISBN: 3319980025
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Publisher: Springer
ISBN: 3319980025
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Residual Stresses and Nanoindentation Testing of Films and Coatings
Author: Haidou Wang
Publisher: Springer
ISBN: 9811078416
Category : Technology & Engineering
Languages : en
Pages : 215
Book Description
This book covers the basic principles and application of nanoindentation technology to determine residual stresses in films and coatings. It briefly introduces various detection technologies for measuring residual stresses, while mainly focusing on nanoindentation. Subsequently, nanoindentation is used to determine residual stresses in different types of films and coatings, and to describe them in detail. This book is intended for specialists, engineers and graduate students in mechanical design, manufacturing, maintenance and remanufacturing, and as a guide to the practice of production with social and economic benefits.
Publisher: Springer
ISBN: 9811078416
Category : Technology & Engineering
Languages : en
Pages : 215
Book Description
This book covers the basic principles and application of nanoindentation technology to determine residual stresses in films and coatings. It briefly introduces various detection technologies for measuring residual stresses, while mainly focusing on nanoindentation. Subsequently, nanoindentation is used to determine residual stresses in different types of films and coatings, and to describe them in detail. This book is intended for specialists, engineers and graduate students in mechanical design, manufacturing, maintenance and remanufacturing, and as a guide to the practice of production with social and economic benefits.
Nanostructured Coatings
Author: Albano Cavaleiro
Publisher: Springer Science & Business Media
ISBN: 0387487565
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
This book delivers practical insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. The text examines relationships between structure/microstructure and mechanical properties from fundamental concepts, through types of coatings, to characterization techniques. The authors explore the search for coatings that can satisfy the criteria for successful implementation in real mechanical applications.
Publisher: Springer Science & Business Media
ISBN: 0387487565
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
This book delivers practical insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. The text examines relationships between structure/microstructure and mechanical properties from fundamental concepts, through types of coatings, to characterization techniques. The authors explore the search for coatings that can satisfy the criteria for successful implementation in real mechanical applications.
Thermally Activated Mechanisms in Crystal Plasticity
Author: D. Caillard
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.