Author:
Publisher:
ISBN:
Category : Nanotechnology
Languages : en
Pages : 420
Book Description
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies
Author:
Publisher:
ISBN:
Category : Nanotechnology
Languages : en
Pages : 420
Book Description
Publisher:
ISBN:
Category : Nanotechnology
Languages : en
Pages : 420
Book Description
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies
Author: Angela Duparré
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819450616
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819450616
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II
Author: Angela Duparré
Publisher: Society of Photo Optical
ISBN: 9780819458834
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Includes Proceedings Vol. 7821
Publisher: Society of Photo Optical
ISBN: 9780819458834
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Includes Proceedings Vol. 7821
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies III
Author: Angela Duparré
Publisher: Society of Photo Optical
ISBN: 9780819468208
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Includes Proceedings Vol. 7821
Publisher: Society of Photo Optical
ISBN: 9780819468208
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Includes Proceedings Vol. 7821
Nanoscale Calibration Standards and Methods
Author: Günter Wilkening
Publisher: John Wiley & Sons
ISBN: 3527606874
Category : Technology & Engineering
Languages : en
Pages : 541
Book Description
The quantitative determination of the properties of micro- and nanostructures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. The knowledge of the geometrical dimensions of structures in most cases is the base, to which other physical and chemical properties are linked. Quantitative measurements require reliable and stable instruments, suitable measurement procedures as well as appropriate calibration artefacts and methods. The seminar "NanoScale 2004" (6th Seminar on Quantitative Microscopy and 2nd Seminar on Nanoscale Calibration Standards and Methods) at the National Metrology Institute (Physikalisch-Technische Bundesanstalt PTB), Braunschweig, Germany, continues the series of seminars on Quantitative Microscopy. The series stimulates the exchange of information between manufacturers of relevant hard- and software and the users in science and industry. Topics addressed in these proceedings are a) the application of quantitative measurements and measurement problems in: microelectronics, microsystems technology, nano/quantum/molecular electronics, chemistry, biology, medicine, environmental technology, materials science, surface processing b) calibration & correction methods: calibration methods, calibration standards, calibration procedures, traceable measurements, standardization, uncertainty of measurements c) instrumentation and methods: novel/improved instruments and methods, reproducible probe/sample positioning, position-measuring systems, novel/improved probe/detector systems, linearization methods, image processing
Publisher: John Wiley & Sons
ISBN: 3527606874
Category : Technology & Engineering
Languages : en
Pages : 541
Book Description
The quantitative determination of the properties of micro- and nanostructures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. The knowledge of the geometrical dimensions of structures in most cases is the base, to which other physical and chemical properties are linked. Quantitative measurements require reliable and stable instruments, suitable measurement procedures as well as appropriate calibration artefacts and methods. The seminar "NanoScale 2004" (6th Seminar on Quantitative Microscopy and 2nd Seminar on Nanoscale Calibration Standards and Methods) at the National Metrology Institute (Physikalisch-Technische Bundesanstalt PTB), Braunschweig, Germany, continues the series of seminars on Quantitative Microscopy. The series stimulates the exchange of information between manufacturers of relevant hard- and software and the users in science and industry. Topics addressed in these proceedings are a) the application of quantitative measurements and measurement problems in: microelectronics, microsystems technology, nano/quantum/molecular electronics, chemistry, biology, medicine, environmental technology, materials science, surface processing b) calibration & correction methods: calibration methods, calibration standards, calibration procedures, traceable measurements, standardization, uncertainty of measurements c) instrumentation and methods: novel/improved instruments and methods, reproducible probe/sample positioning, position-measuring systems, novel/improved probe/detector systems, linearization methods, image processing
Form-Profiling of Optics Using the Geometry Measuring Machine and the M-48 CMM at NIST
Author:
Publisher: DIANE Publishing
ISBN: 9781422328415
Category :
Languages : en
Pages : 12
Book Description
Publisher: DIANE Publishing
ISBN: 9781422328415
Category :
Languages : en
Pages : 12
Book Description
Optical Techniques for Solid-State Materials Characterization
Author: Rohit P. Prasankumar
Publisher: CRC Press
ISBN: 9780367576929
Category :
Languages : en
Pages : 748
Book Description
With chapters written by pioneering experts in various optical techniques, this comprehensive reference provides detailed descriptions of basic and advanced optical techniques commonly used to study materials, from the simple to the complex. It explains how to use the techniques to acquire, analyze, and interpret data for gaining insight into ma
Publisher: CRC Press
ISBN: 9780367576929
Category :
Languages : en
Pages : 748
Book Description
With chapters written by pioneering experts in various optical techniques, this comprehensive reference provides detailed descriptions of basic and advanced optical techniques commonly used to study materials, from the simple to the complex. It explains how to use the techniques to acquire, analyze, and interpret data for gaining insight into ma
Advanced Optical Spectroscopy Techniques for Semiconductors
Author: Masanobu Yoshikawa
Publisher: Springer Nature
ISBN: 3031197224
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
This book focuses on advanced optical spectroscopy techniques for the characterization of cutting-edge semiconductor materials. It covers a wide range of techniques such as Raman, infrared, photoluminescence, and cathodoluminescence (CL) spectroscopy, including an introduction to their physical fundamentals and best operating principles. Aimed at professionals working in the research and development of semiconductors and semiconductor materials, this book looks at a broad class of materials such as silicon and silicon dioxide, nano-diamond thin films, quantum dots, and gallium oxide. In addition to the spectroscopic techniques covered, this book features a chapter devoted to the use of a scanning electron transmission microscope as an excitation source for CL spectroscopy. Written by a practicing industry expert in the field, this book is an ideal source of reference and best-practices guide for physicists, as well as materials scientists and engineers involved in the area of spectroscopy of semiconductor materials. Further, this book introduces the cutting-edge spectroscopy such as optical photothermal IR and Raman spectroscopy or terahertz time-domain spectroscopy (THz-TDS) etc.
Publisher: Springer Nature
ISBN: 3031197224
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
This book focuses on advanced optical spectroscopy techniques for the characterization of cutting-edge semiconductor materials. It covers a wide range of techniques such as Raman, infrared, photoluminescence, and cathodoluminescence (CL) spectroscopy, including an introduction to their physical fundamentals and best operating principles. Aimed at professionals working in the research and development of semiconductors and semiconductor materials, this book looks at a broad class of materials such as silicon and silicon dioxide, nano-diamond thin films, quantum dots, and gallium oxide. In addition to the spectroscopic techniques covered, this book features a chapter devoted to the use of a scanning electron transmission microscope as an excitation source for CL spectroscopy. Written by a practicing industry expert in the field, this book is an ideal source of reference and best-practices guide for physicists, as well as materials scientists and engineers involved in the area of spectroscopy of semiconductor materials. Further, this book introduces the cutting-edge spectroscopy such as optical photothermal IR and Raman spectroscopy or terahertz time-domain spectroscopy (THz-TDS) etc.
Characterization of Semiconductor Heterostructures and Nanostructures
Author: Giovanni Agostini
Publisher: Elsevier
ISBN: 0080558151
Category : Science
Languages : en
Pages : 501
Book Description
In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Publisher: Elsevier
ISBN: 0080558151
Category : Science
Languages : en
Pages : 501
Book Description
In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Integrated Nanophotonic Devices
Author: Zeev Zalevsky
Publisher: Elsevier
ISBN: 0323228631
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Nanophotonics is a newly developing and exciting field, with two main areas of interest: imaging/computer vision and data transport. The technologies developed in the field of nanophotonics have far reaching implications with a wide range of potential applications from faster computing power to medical applications, and "smart" eyeglasses to national security. Integrated Nanophotonic Devices explores one of the key technologies emerging within nanophotonics: that of nano-integrated photonic modulation devices and sensors. The authors introduce the scientific principles of these devices and provide a practical, applications-based approach to recent developments in the design, fabrication and experimentation of integrated photonic modulation circuits. For this second edition, all chapters have been expanded and updated to reflect this rapidly advancing field, and an entirely new chapter has been added to cover liquid crystals integrated with nanostructures. - Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security, and sensing - Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services - By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds
Publisher: Elsevier
ISBN: 0323228631
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Nanophotonics is a newly developing and exciting field, with two main areas of interest: imaging/computer vision and data transport. The technologies developed in the field of nanophotonics have far reaching implications with a wide range of potential applications from faster computing power to medical applications, and "smart" eyeglasses to national security. Integrated Nanophotonic Devices explores one of the key technologies emerging within nanophotonics: that of nano-integrated photonic modulation devices and sensors. The authors introduce the scientific principles of these devices and provide a practical, applications-based approach to recent developments in the design, fabrication and experimentation of integrated photonic modulation circuits. For this second edition, all chapters have been expanded and updated to reflect this rapidly advancing field, and an entirely new chapter has been added to cover liquid crystals integrated with nanostructures. - Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security, and sensing - Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services - By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds