Adaptive Internal Models for Motor Control and Visual Prediction

Adaptive Internal Models for Motor Control and Visual Prediction PDF Author: Wolfram Schenck
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832518991
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
In this thesis, computational models of adaptive motor control and visuomotor coordination are explored and developed. These models relate to hypotheses on how sensorimotor processing in biological organisms might be organized at an abstract level; furthermore, these models and their specific implementations offer solutions for technical problems in the domain of adaptive robotics. For this reason, both biological and technical aspects are addressed. On the one hand, this thesis focuses on the learning of so-called internal models (Miall et al., 1993; Kawato, 1999): "forward models", which predict the sensory consequences of the agent''s own actions, and "inverse models", which act like motor controllers and generate motor commands. In this area, new strategies and algorithms for learning are suggested and tested on both simulated and real-world robot setups. This work contributes to the understanding of the "building blocks" of integrated sensorimotor processing. On the other hand, this thesis suggests complex models of sensorimotor coordination: In a study on the grasping to extrafoveal targets with a robot arm, it is explored how forward and inverse models may interact, and a second study addresses the question how visual perception of space might arise from the learning of sensorimotor relationships. The theoretical part of the thesis starts with a close view on sensorimotor processing. The cognitivist approach and the embodied approach to sensorimotor processing are contrasted with each other, providing evidence from psychological and neurophysiological studies in favor of the latter. It is outlined how the application of robots fits into the embodied approach as research method. Furthermore, internal models are defined in a formal way, and an overview of their role in models of perception and cognition is provided, with a special emphasis on anticipation and predictive forward models. Afterwards, a thorough overview of internal models in adaptive motor control (covering both kinematics and dynamics) and a novel learning strategy for kinematic control problems ("learning by averaging") are presented. The experimental work comprises four different studies. First, a detailed comparison study of various motor learning strategies for kinematic problems is presented. The performance of "feedback error learning" (Kawato et al., 1987), "distal supervised learning" (Jordan and Rumelhart, 1992), and "direct inverse modeling" (e.g., Kuperstein, 1987) is directly compared on several learning tasks from the domain of eye and arm control (on simulated setups). Moreover, an improved version of direct inverse modeling on the basis of abstract recurrent networks and learning by averaging are included in the comparison. The second study is dedicated to the learning of a visual forward model for a robot camera head. This forward model predicts the visual consequences of camera movements for all pixels of the camera image. The presented learning algorithm is able to overcome the two main difficulties of visual prediction: first, the high dimensionality of the input and output space, and second, the need to detect which part of the visual output is non-predictable. To demonstrate the robustness of the presented learning algorithm, the work is not carried out on plain camera images, but on distorted "retinal images" with a decreasing resolution towards the corners. In the third experimental chapter, a model for grasping to extrafoveal (non-fixated) targets is presented. It is implemented on a robot setup, consisting of a camera head and a robot arm. This model is based on the premotor theory of attention (Rizzolatti et al., 1994) and adds one specific hypothesis: Attention shifts caused by saccade programming imply a prediction of the retinal foveal images after the saccade. For this purpose, the visual forward model from the preceding study is used. Based on this model, several grasping modes are compared; the obtained results are qualitatively congruent with the performance that can be expected from human subjects. The fourth study is based on the theory that visual perception of space and shape is based on an internal simulation process which relies on forward models (Moeller, 1999). This theory is tested by synthetic modeling in the task domain of block pushing with a robot arm.

Adaptive Internal Models for Motor Control and Visual Prediction

Adaptive Internal Models for Motor Control and Visual Prediction PDF Author: Wolfram Schenck
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832518991
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
In this thesis, computational models of adaptive motor control and visuomotor coordination are explored and developed. These models relate to hypotheses on how sensorimotor processing in biological organisms might be organized at an abstract level; furthermore, these models and their specific implementations offer solutions for technical problems in the domain of adaptive robotics. For this reason, both biological and technical aspects are addressed. On the one hand, this thesis focuses on the learning of so-called internal models (Miall et al., 1993; Kawato, 1999): "forward models", which predict the sensory consequences of the agent''s own actions, and "inverse models", which act like motor controllers and generate motor commands. In this area, new strategies and algorithms for learning are suggested and tested on both simulated and real-world robot setups. This work contributes to the understanding of the "building blocks" of integrated sensorimotor processing. On the other hand, this thesis suggests complex models of sensorimotor coordination: In a study on the grasping to extrafoveal targets with a robot arm, it is explored how forward and inverse models may interact, and a second study addresses the question how visual perception of space might arise from the learning of sensorimotor relationships. The theoretical part of the thesis starts with a close view on sensorimotor processing. The cognitivist approach and the embodied approach to sensorimotor processing are contrasted with each other, providing evidence from psychological and neurophysiological studies in favor of the latter. It is outlined how the application of robots fits into the embodied approach as research method. Furthermore, internal models are defined in a formal way, and an overview of their role in models of perception and cognition is provided, with a special emphasis on anticipation and predictive forward models. Afterwards, a thorough overview of internal models in adaptive motor control (covering both kinematics and dynamics) and a novel learning strategy for kinematic control problems ("learning by averaging") are presented. The experimental work comprises four different studies. First, a detailed comparison study of various motor learning strategies for kinematic problems is presented. The performance of "feedback error learning" (Kawato et al., 1987), "distal supervised learning" (Jordan and Rumelhart, 1992), and "direct inverse modeling" (e.g., Kuperstein, 1987) is directly compared on several learning tasks from the domain of eye and arm control (on simulated setups). Moreover, an improved version of direct inverse modeling on the basis of abstract recurrent networks and learning by averaging are included in the comparison. The second study is dedicated to the learning of a visual forward model for a robot camera head. This forward model predicts the visual consequences of camera movements for all pixels of the camera image. The presented learning algorithm is able to overcome the two main difficulties of visual prediction: first, the high dimensionality of the input and output space, and second, the need to detect which part of the visual output is non-predictable. To demonstrate the robustness of the presented learning algorithm, the work is not carried out on plain camera images, but on distorted "retinal images" with a decreasing resolution towards the corners. In the third experimental chapter, a model for grasping to extrafoveal (non-fixated) targets is presented. It is implemented on a robot setup, consisting of a camera head and a robot arm. This model is based on the premotor theory of attention (Rizzolatti et al., 1994) and adds one specific hypothesis: Attention shifts caused by saccade programming imply a prediction of the retinal foveal images after the saccade. For this purpose, the visual forward model from the preceding study is used. Based on this model, several grasping modes are compared; the obtained results are qualitatively congruent with the performance that can be expected from human subjects. The fourth study is based on the theory that visual perception of space and shape is based on an internal simulation process which relies on forward models (Moeller, 1999). This theory is tested by synthetic modeling in the task domain of block pushing with a robot arm.

Anticipatory Behavior in Adaptive Learning Systems

Anticipatory Behavior in Adaptive Learning Systems PDF Author: Giovanni Pezzulo
Publisher: Springer
ISBN: 364202565X
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
Anticipatory behavior in adaptive learning systems continues attracting attention of researchers in many areas, including cognitive systems, neuroscience, psychology, and machine learning. This book constitutes the thoroughly refereed post-workshop proceedings of the 4th International Workshop on Anticipatory Behavior in Adaptive Learning Systems, ABiALS 2008, held in Munich, Germany, in June 2008, in collaboration with the six-monthly Meeting of euCognition 'The Role of Anticipation in Cognition'. The 18 revised full papers presented were carefully selected during two rounds of reviewing and improvement for inclusion in the book. The introductory chapter of this state-of-the-art survey not only provides an overview of the contributions included in this volume but also revisits the current available terminology on anticipatory behavior and relates it to the available system approaches. The papers are organized in topical sections on anticipation in psychology with focus on the ideomotor view, conceptualizations, anticipation and dynamical systems, computational modeling of psychological processes in the individual and social domains, behavioral and cognitive capabilities based on anticipation, and computational frameworks and algorithms for anticipation, and their evaluation.

The Nature of Explanation

The Nature of Explanation PDF Author: K. J. W. Craik
Publisher: CUP Archive
ISBN: 9780521094450
Category : Psychology
Languages : en
Pages : 140

Get Book Here

Book Description
In his only complete work of any length, Kenneth Craik considers thought as a term for the conscious working of a highly complex machine.

Re-Enacting Sensorimotor Experience for Cognition

Re-Enacting Sensorimotor Experience for Cognition PDF Author: Guido Schillaci
Publisher: Frontiers Media SA
ISBN: 2889451488
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Mastering the sensorimotor capabilities of our body is a skill that we acquire and refine over time, starting at the prenatal stages of development. This learning process is linked to brain development and is shaped by the rich set of multimodal information experienced while exploring and interacting with the environment. Evidence coming from neuroscience suggests the brain forms and mantains body representations as the main strategy to this mastering. Although it is still not clear how this knowledge is represented in our brain, it is reasonable to think that such internal models of the body undergo a continuous process of adaptation. They need to match growing corporal dimensions during development, as well as temporary changes in the characteristics of the body, such as the transient morphological alterations produced by the usage of tools. In the robotics community there is an increasing interest in reproducing similar mechanisms in artificial agents, mainly motivated by the aim of producing autonomous adaptive systems that can deal with complexity and uncertainty in human environments. Although promising results have been achieved in the context of sensorimotor learning and autonomous generation of body representations, it is still not clear how such low-level representations can be scaled up to more complex motor skills and how they can enable the development of cognitive capabilities. Recent findings from behavioural and brain studies suggests that processes of mental simulations of action-perception loops are likely to be executed in our brain and are dependent on internal motor representations. The capability to simulate sensorimotor experience might represent a key mechanism behind the implementation of further cognitive skills, such as self-detection, self-other distinction and imitation. Empirical investigation on the functioning of similar processes in the brain and on their implementation in artificial agents is fragmented. This e-book comprises a collection of manuscripts published by Frontiers in Robotics and Artificial Intelligence, under the section Humanoid Robotics, on the research topic re-enactment of sensorimotor experience for cognition in artificial agents. This compendium aims at condensing the latest theoretical, review and experimental studies that address new paradigms for learning and integrating multimodal sensorimotor information in artificial agents, re-use of the sensorimotor experience for cognitive development and further construction of more complex strategies and behaviours using these concepts. The authors would like to thank M.A. Dylan Andrade for his art work for the cover.

Measuring, modelling and minimizing perceived motion incongruence for vehicle motion simulation

Measuring, modelling and minimizing perceived motion incongruence for vehicle motion simulation PDF Author: Diane Cleij
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832550445
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
Humans always wanted to go faster and higher than their own legs could carry them. This led them to invent numerous types of vehicles to move fast over land, water and air. As training how to handle such vehicles and testing new developments can be dangerous and costly, vehicle motion simulators were invented. Motion-based simulators in particular, combine visual and physical motion cues to provide occupants with a feeling of being in the real vehicle. While visual cues are generally not limited in amplitude, physical cues certainly are, due to the limited simulator motion space. A motion cueing algorithm (MCA) is used to map the vehicle motions onto the simulator motion space. This mapping inherently creates mismatches between the visual and physical motion cues. Due to imperfections in the human perceptual system, not all visual/physical cueing mismatches are perceived. However, if a mismatch is perceived, it can impair the simulation realism and even cause simulator sickness. For MCA design, a good understanding of when mismatches are perceived, and ways to prevent these from occurring, are therefore essential. In this thesis a data-driven approach, using continuous subjective measures of the time-varying Perceived Motion Incongruence (PMI), is adopted. PMI in this case refers to the effect that perceived mismatches between visual and physical motion cues have on the resulting simulator realism. The main goal of this thesis was to develop an MCA-independent off-line prediction method for time-varying PMI during vehicle motion simulation, with the aim of improving motion cueing quality. To this end, a complete roadmap, describing how to measure and model PMI and how to apply such models to predict and minimize PMI in motion simulations is presented. Results from several human-in-the-loop experiments are used to demonstrate the potential of this novel approach.

Sensory Guidance of Movement

Sensory Guidance of Movement PDF Author: Gregory R. Bock
Publisher: John Wiley & Sons
ISBN: 0470515570
Category : Medical
Languages : en
Pages : 354

Get Book Here

Book Description
Sensory Guidance of Movement Chairman: Mitchell Glickstein, 1998 In the past few years there has been an increasing recognition of the multiplicity of sensory and motor areas of the cerebral cortex. However, still relatively little is known about the way in which sensory areas are functionally linked to motor areas. On the basis of current anatomical evidence, there are three major pathways involved in this linking. One of these routes is by way of cortico-cortical links, beginning in the primary sensory areas of the cortex, and connecting via a series of synaptic relays to motor or premotor areas. There are also two massive subcortical routes. One of these involves the basal ganglia, the other the cerebellum. This book focuses on current research on the structure and functions of these three pathways and their role in the sensory guidance of movement. Motor psychophysicists have made progress in characterizing the nature of movements such as reaching and grasping, and how such movements are modified by incoming sensory information. Anatomical studies have revealed important new information about the ways in which sensory information is relayed to the basal ganglia and cerebellum. There is now a volume of scanning evidence about the activity of brain areas in humans and recordings from individual neurons in animals during sensory guided movement. This book summarizes much of this recent knowledge and provides a forum for suggesting new avenues for further study. The topics covered also have important implications for understanding the role of these pathways in human disease.

Progress in Motor Control

Progress in Motor Control PDF Author: Michael J. Richardson
Publisher: Springer Science & Business Media
ISBN: 1461454654
Category : Medical
Languages : en
Pages : 205

Get Book Here

Book Description
This volume is the most recent installment of the Progress in Motor Control series. It contains contributions based on presentations by invited speakers at the Progress in Motor Control VIII meeting held in Cincinnati, OH, USA in July, 2011. Progress in Motor Control is the official scientific meeting of the International Society of Motor Control (ISMC). The Progress in Motor Control VIII meeting, and consequently this volume, provide a broad perspective on the latest research on motor control in humans and other species.

Intelligent Data Engineering and Automated Learning – IDEAL 2019

Intelligent Data Engineering and Automated Learning – IDEAL 2019 PDF Author: Hujun Yin
Publisher: Springer Nature
ISBN: 3030336077
Category : Computers
Languages : en
Pages : 575

Get Book Here

Book Description
This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI.

Encyclopedia of Neuroscience

Encyclopedia of Neuroscience PDF Author: Marc D. Binder
Publisher: Springer
ISBN: 9783540237358
Category : Medical
Languages : en
Pages : 4398

Get Book Here

Book Description
This 5000-page masterwork is literally the last word on the topic and will be an essential resource for many. Unique in its breadth and detail, this encyclopedia offers a comprehensive and highly readable guide to a complex and fast-expanding field. The five-volume reference work gathers more than 10,000 entries, including in-depth essays by internationally known experts, and short keynotes explaining essential terms and phrases. In addition, expert editors contribute detailed introductory chapters to each of 43 topic fields ranging from the fundamentals of neuroscience to fascinating developments in the new, inter-disciplinary fields of Computational Neuroscience and Neurophilosophy. Some 1,000 multi-color illustrations enhance and expand the writings.

Active Inference

Active Inference PDF Author: Thomas Parr
Publisher: MIT Press
ISBN: 0262362287
Category : Science
Languages : en
Pages : 313

Get Book Here

Book Description
The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.