Accessing Spawning Habitat Selection and Quantifying Straying Rates of Wild Chinook Salmon (Oncorhynchus Tshawytscha) in a Wilderness Basin

Accessing Spawning Habitat Selection and Quantifying Straying Rates of Wild Chinook Salmon (Oncorhynchus Tshawytscha) in a Wilderness Basin PDF Author: Ellen J. Hamann
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 164

Get Book Here

Book Description


Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus Tshawytscha), Final Report

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus Tshawytscha), Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Get Book Here

Book Description
The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ((almost equal to)1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon PDF Author: David R. Geist
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 264

Get Book Here

Book Description
The spawning habitat associated with fall chinook salmon (Oncorhynchus tshawytscha) redd clusters was investigated in the Hanford Reach of the Columbia River. A conceptual spawning habitat model is proposed that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Further investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Traditional spawning habitat models could be improved if they: used spawning area-specific, rather than river-specific; spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources.

Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report

Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 84

Get Book Here

Book Description
We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were>0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries. To better understand this trend, redd microhabitat data was collected from spring Chinook salmon that spawned in the Chiwawa River and Nason Creek, the primary spawning tributaries in the Wenatchee Basin. The objective of the study was to examine the influence of habitat and spawner density on spawning site and redd structure characteristics. We analyzed 27 variables of redd microhabitat data collected from the upper and lower most reaches of each study stream. In both streams, we found redds in the upper most reaches to be significantly larger (length and width) and deeper (bowl depth). Spawner density was significantly greater in the lower Chiwawa River compared to the upper reach. No difference in spawner density was detected between reaches in Nason Creek (P = 0.54). Data should be considered preliminary until sample size goals are achieved.

Predicting Spawning Habitat for Coho Salmon (Oncorhynchus Kisutch), Chinook Salmon (Oncorhynchus Tshawytscha), and Steelhead (Oncorhynchus Mykiss) Using Geospatially Constructed Stream Morphology from High-resolution Lidar-derived Digital Elevation Model and Field Survey Data in the Indian Creek Watershed, Mendocino County, California

Predicting Spawning Habitat for Coho Salmon (Oncorhynchus Kisutch), Chinook Salmon (Oncorhynchus Tshawytscha), and Steelhead (Oncorhynchus Mykiss) Using Geospatially Constructed Stream Morphology from High-resolution Lidar-derived Digital Elevation Model and Field Survey Data in the Indian Creek Watershed, Mendocino County, California PDF Author: Justin P. Bissell
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 209

Get Book Here

Book Description
Restoration of anadromous salmonid habitat is of primary importance to the economic, historical, and cultural geography of the Pacific Northwest. Derivation and use of geospatial habitat models as guides to pinpoint key areas where limited restoration funding can be cost-effectively employed is of great importance. To this purpose, 1 meter resolution lidar-derived Digital Elevation Model data was acquired for the Indian Creek and neighboring watersheds in Mendocino County, California, and used together with field-acquired geomorphic stream data to geospatially model stream widths, depths, and streambank morphology. These geospatial covariates were field-verified in selected locations and then used in conjunction with field surveyed habitat presence data and substrate data to model potential anadromous salmonid species spawning habitat. Probability surfaces, each comprising the areal extent of the Indian Creek stream system and representing the probability for spawning habitat occurrence, were developed for each of the species of interest. The mean area under the curve (AUC) for 100 model replications for Chinook, Coho, and Steelhead were 0.954, 0.951, and 0.958, with standard deviations of 0.036, 0.034, and 0.036, respectively. In contrast to other models that solely use linear lengths of stream, the models developed in this work incorporate modeled stream bankfull widths and modeled stream corridor morphology, thus allowing additional interpretation and prediction involving the amount of species' use of specific streams and watersheds. Models were field-verified by California Department of Fish and Wildlife fisheries biologist staff and Pacific Watershed Associates engineering geologists and field scientist staff as being representative of actual field conditions, thus assuring the value of modeling results and methodology in future projects and research.

Velocity

Velocity PDF Author: Erik Donofrio
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Get Book Here

Book Description
Due to overfishing, land-use change, and climate change, many freshwater salmonid populations are at risk or already imperiled. Research addressing the biological mechanisms behind habitat selection is important if these populations are to be protected and restored. A literature review of salmonid habitat selection models has shown there is a lack of habitat selection data that relate a fitness surrogate, such as energy intake, to habitat selection. Descriptive studies of habitat selection, such as comparisons between use and availability, generally cannot elucidate the actual mechanisms producing differential selection of habitats. To identify potential factors affecting the decline of Chinook Salmon (Oncorhynchus tshawytscha) in Alaska, we examined the relationship between reactive distance, prey capture success, and water velocity for juvenile Chinook Salmon and used these results test the net energy gain habitat selection model of Grossman et al. (2002). We conducted two experiments, the first with 27 fish between 58 and 84 mm standard length (SL) and weight between 2.8 and 7.5 grams, and the second using pairs of dominant and subordinate fish (i.e., larger and smaller, mean difference= 7 mm (SL)) to test for the effects of dominance on prey capture success. Using an artificial stream tank, we tested juvenile Chinook Salmon at 10 cm/s velocity increments (10 cm/s to 60 cm/s) using frozen brine shrimp (Artemia spp.) as prey. Reactive distances for single fish trials averaged 32.7 cm and did not show significant velocity effects (p=0.66). Velocity was inversely related to prey capture success in a non-linear manner (p

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Get Book Here

Book Description
This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

Habitat Suitability Index Models and Instream Flow Suitability Curves

Habitat Suitability Index Models and Instream Flow Suitability Curves PDF Author: Robert F. Raleigh
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 80

Get Book Here

Book Description


Spawning Areas and Abundance of Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Basin, Past and Present

Spawning Areas and Abundance of Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Basin, Past and Present PDF Author: Leonard A. Fulton
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description


An Evaluation of Spawning Habitat Site Selection Among Upper South Fork Salmon River Chinook Salmon

An Evaluation of Spawning Habitat Site Selection Among Upper South Fork Salmon River Chinook Salmon PDF Author: Kara E. Collier
Publisher:
ISBN:
Category : Salmon
Languages : en
Pages : 84

Get Book Here

Book Description