Author: M. Pilch
Publisher:
ISBN:
Category : Drops
Languages : en
Pages : 296
Book Description
Acceleration Induced Fragmentation of Liquid Drops
Author: M. Pilch
Publisher:
ISBN:
Category : Drops
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Drops
Languages : en
Pages : 296
Book Description
Acceleration Induced Fragmentation of Liquid Drops
Author: M. Pilch
Publisher:
ISBN:
Category : Drops
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Drops
Languages : en
Pages : 296
Book Description
Multiphase Flow Dynamics 4
Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3540929185
Category : Technology & Engineering
Languages : en
Pages : 761
Book Description
The nuclear thermal hydraulic is the science providing knowledge about the physical processes occurring during the transferring the fission heat released in structural materials due to nuclear reactions into its environment. Along its way to the environment the thermal energy is organized to provide useful mechanical work or useful heat or both. Chapter 1 contains introductory information about the heat release in the re- tor core, the thermal power and thermal power density in the fuel, structures and moderator, the influence of the thermal power density on the coolant temperature, the spatial distribution of the thermal power density. Finally some measures are introduced for equalizing of the spatial distribution of the thermal power density. Chapter 2 gives the methods for describing of the steady and of the transient temperature fields in the fuel elements. Some information is provided regarding influence of the cladding oxidation, hydrogen diffusion and of the corrosion pr- uct deposition on the temperature fields. Didactically the nuclear thermal hydraulic needs introductions at different level of complexity by introducing step by step the new features after the previous are clearly presented. The followed two Chapters serve this purpose. Chapter 3 describes mathematically the “simple” steady boiling flow in a pipe. The steady mass-, momentum- and energy conservation equations are solved at different level of complexity by removing one after the other simplifying assu- tions. First the idea of mechanical and thermodynamic equilibrium is introduced.
Publisher: Springer Science & Business Media
ISBN: 3540929185
Category : Technology & Engineering
Languages : en
Pages : 761
Book Description
The nuclear thermal hydraulic is the science providing knowledge about the physical processes occurring during the transferring the fission heat released in structural materials due to nuclear reactions into its environment. Along its way to the environment the thermal energy is organized to provide useful mechanical work or useful heat or both. Chapter 1 contains introductory information about the heat release in the re- tor core, the thermal power and thermal power density in the fuel, structures and moderator, the influence of the thermal power density on the coolant temperature, the spatial distribution of the thermal power density. Finally some measures are introduced for equalizing of the spatial distribution of the thermal power density. Chapter 2 gives the methods for describing of the steady and of the transient temperature fields in the fuel elements. Some information is provided regarding influence of the cladding oxidation, hydrogen diffusion and of the corrosion pr- uct deposition on the temperature fields. Didactically the nuclear thermal hydraulic needs introductions at different level of complexity by introducing step by step the new features after the previous are clearly presented. The followed two Chapters serve this purpose. Chapter 3 describes mathematically the “simple” steady boiling flow in a pipe. The steady mass-, momentum- and energy conservation equations are solved at different level of complexity by removing one after the other simplifying assu- tions. First the idea of mechanical and thermodynamic equilibrium is introduced.
Multiphase Flow Dynamics 2
Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3642205984
Category : Technology & Engineering
Languages : en
Pages : 371
Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM
Publisher: Springer Science & Business Media
ISBN: 3642205984
Category : Technology & Engineering
Languages : en
Pages : 371
Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM
Multiphase Flow Dynamics 5
Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3642206018
Category : Technology & Engineering
Languages : en
Pages : 839
Book Description
The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction of the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in the rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then a powerful method for nonlinear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Basics of designing of steam generators, moisture separators and emergency condensers are presented. Methods for analyzing a complex pipe network flows with components like pumps, valves etc. are also presented. Methods for analysis of important aspects of the severe accidents like melt-water interactions, external cooling and cooling of layers of molten nuclear reactor material are presented. Valuable sets of thermo-physical and transport properties for severe accident analysis are presented for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and lead-bismuth eutectic alloy. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics. This present second edition includes various updates, extensions, improvements and corrections. This present second edition includes various updates, extensions, improvements and corrections.
Publisher: Springer Science & Business Media
ISBN: 3642206018
Category : Technology & Engineering
Languages : en
Pages : 839
Book Description
The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction of the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in the rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then a powerful method for nonlinear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Basics of designing of steam generators, moisture separators and emergency condensers are presented. Methods for analyzing a complex pipe network flows with components like pumps, valves etc. are also presented. Methods for analysis of important aspects of the severe accidents like melt-water interactions, external cooling and cooling of layers of molten nuclear reactor material are presented. Valuable sets of thermo-physical and transport properties for severe accident analysis are presented for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and lead-bismuth eutectic alloy. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics. This present second edition includes various updates, extensions, improvements and corrections. This present second edition includes various updates, extensions, improvements and corrections.
Multiphase Flow Dynamics 1
Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3540698329
Category : Technology & Engineering
Languages : en
Pages : 789
Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.
Publisher: Springer Science & Business Media
ISBN: 3540698329
Category : Technology & Engineering
Languages : en
Pages : 789
Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.
NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 308
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 308
Book Description
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1172
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1172
Book Description
Title List of Documents Made Publicly Available
Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 492
Book Description
Fundamentals of Turbulent and Multiphase Combustion
Author: Kenneth Kuan-yun Kuo
Publisher: John Wiley & Sons
ISBN: 111809929X
Category : Science
Languages : en
Pages : 914
Book Description
Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 111809929X
Category : Science
Languages : en
Pages : 914
Book Description
Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.