Abiotic and Biotic Stress in Horticultural Crops: Insight into Recent Advances in the Underlying Tolerance Mechanism

Abiotic and Biotic Stress in Horticultural Crops: Insight into Recent Advances in the Underlying Tolerance Mechanism PDF Author: Milan Kumar Lal
Publisher: Frontiers Media SA
ISBN: 283252690X
Category : Science
Languages : en
Pages : 697

Get Book

Book Description

Abiotic and Biotic Stress in Horticultural Crops: Insight into Recent Advances in the Underlying Tolerance Mechanism

Abiotic and Biotic Stress in Horticultural Crops: Insight into Recent Advances in the Underlying Tolerance Mechanism PDF Author: Milan Kumar Lal
Publisher: Frontiers Media SA
ISBN: 283252690X
Category : Science
Languages : en
Pages : 697

Get Book

Book Description


The Potential Role of Melatonin in the Regulation of Abiotic Stress in Plants

The Potential Role of Melatonin in the Regulation of Abiotic Stress in Plants PDF Author: Milan Kumar Lal
Publisher: Frontiers Media SA
ISBN: 2832535631
Category : Science
Languages : en
Pages : 135

Get Book

Book Description


New Frontiers in Plant-Environment Interactions

New Frontiers in Plant-Environment Interactions PDF Author: Tariq Aftab
Publisher: Springer Nature
ISBN: 3031437292
Category : Technology & Engineering
Languages : en
Pages : 571

Get Book

Book Description
This book provides information about plant–environment studies and challenges for plant improvement to achieve food security. Plants face a wide range of environmental challenges, which are expected to become more intense as a result of global climate change. Plant–environment interactions play an important role in the functioning of ecosystems. There are habitats throughout the world that present challenges to crop plants, such as through a lack of water and excessive, or toxic, salts in the soil. Soil properties represent a strong selection pressure for plant diversity and influence the structure of plant communities and participate to the generation and maintenance of biodiversity. Plant communities selected by environment grow by modifying soil physical, chemical, and biological properties, with consequent effects on survival and growth of plants. The complexity of plant–environment interactions has recently been studied by developing a trait-based approach in which responses and effects of plants on environment were quantified and modeled. This fundamental research on plant–environment interaction in ecosystems is essential to transpose knowledges of functional ecology to environmental management. Plants have adapted to an incredible range of environment, and extensive researches on ecological and environmental plant physiology have provided mechanistic understanding of the survival, distribution, productivity, and abundance of plant species across the diverse climates of our planet. Ecophysiological techniques have greatly advanced our understanding of photosynthesis, respiration, plant water relations, and plant responses to abiotic and biotic stresses, from instantaneous to evolutionary timescales. Ecophysiological studies also provide the basis for scaling plant physiological processes from the tissue to the canopy, ecosystem, region, and to a large extent, the entire globe. Given the above, the author proposes to bring forth a comprehensive book, “New Frontiers in Plant-Environment Interactions”, highlighting the various emerging techniques and applications that are currently being used in plant–environment interaction research and its future prospects. The author is sure that this book caters the need of all those who are working or have interest in the above topic.

Abiotic and Biotic Stress in Plants

Abiotic and Biotic Stress in Plants PDF Author: Arun Shanker
Publisher: BoD – Books on Demand
ISBN: 9535122509
Category : Technology & Engineering
Languages : en
Pages : 770

Get Book

Book Description
The impact of global climate change on crop production has emerged as a major research priority during the past decade. Understanding abiotic stress factors such as temperature and drought tolerance and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is of paramount importance to counter climate change related adverse effects on the productivity of crops. In this multi-authored book, we present synthesis of information for developing strategies to combat plant stress. Our effort here is to present a judicious mixture of basic as well as applied research outlooks so as to interest workers in all areas of plant science. We trust that the information covered in this book would bridge the much-researched area of stress in plants with the much-needed information for evolving climate-ready crop cultivars to ensure food security in the future.

Stress Tolerance in Horticultural Crops

Stress Tolerance in Horticultural Crops PDF Author: Ajay Kumar
Publisher: Woodhead Publishing
ISBN: 0323853633
Category : Science
Languages : en
Pages : 442

Get Book

Book Description
Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies explores concepts, strategies and recent advancements in the area of abiotic stress tolerance in horticultural crops, highlighting the latest advances in molecular breeding, genome sequencing and functional genomics approaches. Further sections present specific insights on different aspects of abiotic stress tolerance from classical breeding, hybrid breeding, speed breeding, epigenetics, gene/quantitative trait loci (QTL) mapping, transgenics, physiological and biochemical approaches to OMICS approaches, including functional genomics, proteomics and genomics assisted breeding. Due to constantly changing environmental conditions, abiotic stress such as high temperature, salinity and drought are being understood as an imminent threat to horticultural crops, including their detrimental effects on plant growth, development, reproduction, and ultimately, on yield. This book offers a comprehensive resource on new developments that is ideal for anyone working in the field of abiotic stress management in horticultural crops, including researchers, students and educators. Describes advances in whole genome and next generation sequencing approaches for breeding climate smart horticultural crops Details advanced germplasm tolerance to abiotic stresses screened in the recent past and their performance Includes advancements in OMICS approaches in horticultural crops

Abiotic stress adaptation and tolerance mechanisms in crop plants

Abiotic stress adaptation and tolerance mechanisms in crop plants PDF Author: Jiban Shrestha
Publisher: Frontiers Media SA
ISBN: 2832550924
Category : Science
Languages : en
Pages : 607

Get Book

Book Description
Agricultural communities are being affected by climate change. Droughts, heat waves, cold snaps, and flooding are all regarded as severe threats to crop production as they hinder plant growth and development, resulting in yield losses. Plants respond to stress through a complex process that includes changes in physiological and biochemical processes, gene expression, and alterations in the amounts of metabolites and proteins at different developmental stages. This special issue will focus on recent advances in the use of various traditional and modern biotechnological strategies to understand stress adaptation and tolerance mechanisms including (but not limited to) genomics, transcriptomics, metabolomics, proteomics, miRNA, genome editing, transgenic plants, exogenous application of plant growth regulators, and so on. Abiotic stress is a key constraint to agricultural production around the world. Water deficit, excess precipitation, high and low temperature, and salinity are the most prevalent abiotic stresses. Compaction, mineral availability, and pH-related stressors are among the others. This Research Topic aims to highlight the most recent breakthroughs in plant responses to abiotic stresses and adaptation/tolerance strategies. This special issue provides the advanced toolkit and technologies that are used to investigate and understand plant responses to abiotic stress. The purpose of this special issue is to give a platform for scientists and academics from across the world to promote, share, and discuss new concerns and advancements in the field of abiotic stress in plants. Current updates and recent developments in the physiological, molecular, and genetic perspectives on combined and sequential stress responses and tolerance in field crops are expected in articles. Original research and review articles dealing with abiotic stress are welcomed. In this special issue, potential topics include, but are not limited to: • Physiological, biochemical and molecular responses of plants under abiotic stress. • Systems biology approaches to study abiotic stress in crop plants. • Phenotyping for abiotic stress tolerance in crops. • Physiological and molecular characterization of crop tolerance to abiotic stresses. • Molecular breeding for developing and improving abiotic stress resilience in crops. • Microbial mitigation of abiotic stress responses in crops • Omics technologies for abiotic stress tolerance in plants. • Performance of novel GMO crops under abiotic stress conditions. • CRISPR-Cas Genome editing tools for the Improvement of abiotic stress tolerance in plants. • Crop production in abiotic stress conditions.

Metals and Metalloids in Plant Signaling

Metals and Metalloids in Plant Signaling PDF Author: Tariq Aftab
Publisher: Springer Nature
ISBN: 3031590244
Category :
Languages : en
Pages : 360

Get Book

Book Description


Melatonin in Plants: A Regulator for Plant Growth and Development

Melatonin in Plants: A Regulator for Plant Growth and Development PDF Author: Ravinder Kumar
Publisher: Springer Nature
ISBN: 9819967457
Category : Science
Languages : en
Pages : 312

Get Book

Book Description
This book highlights the multifunctional role of the ubiquitous molecule, melatonin, in crop plants. The major focus of this edition is to provide detailed insights into morphophysiological, biochemical, and molecular responses of melatonin in the growth and development of the plant. The inception of melatonin as an animal hormone and the subsequent discovery of its multifaceted function in the animal system has triggered the research on this pineal gland hormone. During the last decade, the discovery, quantification and functional studies of melatonin as phytohormone has emerged at a rapid pace. Recently, this phyto-protectant has become an integral component of lab and field-based research on the mitigation of adverse effects of climate-driven abiotic stresses and postharvest biology and technology. The book explores various biosynthetic pathways and detection of melatonin covering its role in flowering, fruit development, photosynthesis, respiration, hormonal crosstalk, post-harvest biology and reactive oxygen species and nitrogen cycles. This book is of high interest to postharvest industries, horticulturists, scientists, researchers, and students.

Genetic advancements for improving the plant tolerance to biotic and abiotic stresses

Genetic advancements for improving the plant tolerance to biotic and abiotic stresses PDF Author: Krishnanand P. Kulkarni
Publisher: Frontiers Media SA
ISBN: 283254990X
Category : Science
Languages : en
Pages : 204

Get Book

Book Description
Crop plants are constantly exposed to multiple abiotic (such as drought, salinity, cold, flooding, heavy metal, and heat) and/or biotic (bacterial/fungal/viral) stress factors that hinder their growth and development, subsequently leading to decreases in quality and yield. During the last two decades, many classical genetic and breeding approaches have been used to develop stress-tolerant and climate-adaptable plants that can provide a better yield to meet food demands. Climate change poses a major risk to food security as the world faces frequent floods, droughts, heat waves, and the emergence of new invasive pests and diseases. Novel genomic and genetic approaches look promising to improve plant resilience under stress conditions and achieve sustainable crop improvements. Recent advances in sequencing technologies have facilitated the generation of a plethora of genomic resources in a variety of crop and plant species. With the increased availability of genomic and transcriptomic data, an increasing number of quantitative trait loci and candidate genes are being identified for their application in improving plant tolerance to abiotic and biotic stresses. New approaches such as genomic selection and genomic-assisted breeding have been utilized to develop stress-tolerant cultivars in a variety of plant species. Furthermore, transgenics and rapidly evolving CRISPR technology offer great potential for plant improvement. This Research Topic aims to provide insights into the molecular and genetic factors involved in imparting abiotic and biotic stress tolerance in plants and their application in enhancing plant adaptation to these stress conditions. To review the progress in this research category, we invite manuscripts related to the plant responses to abiotic/biotic stresses and trait improvement through genomic selection, and transgenic or gene-editing approaches. Studies including physiological, biochemical, and molecular genetic analyses revealing the mechanisms involved in plant response to abiotic/biotic stresses are welcome. Topic editor Dr. Balaji Aravindhan Pandian is employed by Enko Chem Inc. All other Topic Editors declare no competing interests with regard to the Research Topic subject.

Advancements in Developing Abiotic Stress-Resilient Plants

Advancements in Developing Abiotic Stress-Resilient Plants PDF Author: M. Iqbal R. Khan
Publisher: CRC Press
ISBN: 1000572870
Category : Science
Languages : en
Pages : 394

Get Book

Book Description
Plants often encounter abiotic stresses including drought, salinity, flooding, high/low temperatures, and metal toxicity, among others. The majority of these stresses occur simultaneously and thus limit crop production. Therefore, the need of the hour is to improve the abiotic stresses tolerance of crop plants by integrating physiology, omics, and modern breeding approaches. This book covers various aspects including (1) abiotic stress responses in plants and progress made so far in the allied areas for trait improvements, (2) integrates knowledge gained from basic physiology to advanced omics tools to assist new breeding technologies, and (3) discusses key genes, proteins, and metabolites or pathways for developing new crop varieties with improved tolerance traits.