A Visual Introduction to Differential Forms and Calculus on Manifolds

A Visual Introduction to Differential Forms and Calculus on Manifolds PDF Author: Jon Pierre Fortney
Publisher: Springer
ISBN: 3319969927
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

A Visual Introduction to Differential Forms and Calculus on Manifolds

A Visual Introduction to Differential Forms and Calculus on Manifolds PDF Author: Jon Pierre Fortney
Publisher: Birkhäuser
ISBN: 9783319969916
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Calculus on Manifolds

Calculus on Manifolds PDF Author: Michael Spivak
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164

Get Book Here

Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.

Differential Forms

Differential Forms PDF Author: Steven H. Weintraub
Publisher: Academic Press
ISBN: 9780127425108
Category : Business & Economics
Languages : en
Pages : 50

Get Book Here

Book Description
This text is one of the first to treat vector calculus using differential forms in place of vector fields and other outdated techniques. Geared towards students taking courses in multivariable calculus, this innovative book aims to make the subject more readily understandable. Differential forms unify and simplify the subject of multivariable calculus, and students who learn the subject as it is presented in this book should come away with a better conceptual understanding of it than those who learn using conventional methods. * Treats vector calculus using differential forms * Presents a very concrete introduction to differential forms * Develops Stokess theorem in an easily understandable way * Gives well-supported, carefully stated, and thoroughly explained definitions and theorems. * Provides glimpses of further topics to entice the interested student

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms PDF Author: Tristan Needham
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups PDF Author: Frank W. Warner
Publisher: Springer Science & Business Media
ISBN: 1475717997
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Differential Forms

Differential Forms PDF Author: Steven H. Weintraub
Publisher: Elsevier
ISBN: 0123946174
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
Differential forms are a powerful mathematical technique to help students, researchers, and engineers solve problems in geometry and analysis, and their applications. They both unify and simplify results in concrete settings, and allow them to be clearly and effectively generalized to more abstract settings. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems. Differential Forms, Second Edition, is a solid resource for students and professionals needing a general understanding of the mathematical theory and to be able to apply that theory into practice. - Provides a solid theoretical basis of how to develop and apply differential forms to real research problems - Includes computational methods to enable the reader to effectively use differential forms - Introduces theoretical concepts in an accessible manner

A Geometric Approach to Differential Forms

A Geometric Approach to Differential Forms PDF Author: David Bachman
Publisher: Springer Science & Business Media
ISBN: 0817683046
Category : Mathematics
Languages : en
Pages : 167

Get Book Here

Book Description
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Differential Forms and Applications

Differential Forms and Applications PDF Author: Manfredo P. Do Carmo
Publisher: Springer Science & Business Media
ISBN: 3642579515
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.