Author: Bhāskarācārya
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 242
Book Description
An important mathematician and astronomer in medieval India, Bhascara Acharya (1114-85) wrote treatises on arithmetic, algebra, geometry and astronomy. He is also believed to have been head of the astronomical observatory at Ujjain, which was the leading centre of mathematical sciences in India. Forming part of his Sanskrit magnum opus Siddhānta Shiromani, the present work is his treatise on arithmetic, including coverage of geometry. It was first published in English in 1816 after being translated by the East India Company surgeon John Taylor (d.1821). Used as a textbook in India for centuries, it provides the basic mathematics needed for astronomy. Topics covered include arithmetical terms, plane geometry, solid geometry and indeterminate equations. Of enduring interest in the history of mathematics, this work also contains Bhascara's pictorial proof of Pythagoras' theorem.
Lilawati: Or A Treatise on Arithmetic and Geometry
Author: Bhāskarācārya
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 242
Book Description
An important mathematician and astronomer in medieval India, Bhascara Acharya (1114-85) wrote treatises on arithmetic, algebra, geometry and astronomy. He is also believed to have been head of the astronomical observatory at Ujjain, which was the leading centre of mathematical sciences in India. Forming part of his Sanskrit magnum opus Siddhānta Shiromani, the present work is his treatise on arithmetic, including coverage of geometry. It was first published in English in 1816 after being translated by the East India Company surgeon John Taylor (d.1821). Used as a textbook in India for centuries, it provides the basic mathematics needed for astronomy. Topics covered include arithmetical terms, plane geometry, solid geometry and indeterminate equations. Of enduring interest in the history of mathematics, this work also contains Bhascara's pictorial proof of Pythagoras' theorem.
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 242
Book Description
An important mathematician and astronomer in medieval India, Bhascara Acharya (1114-85) wrote treatises on arithmetic, algebra, geometry and astronomy. He is also believed to have been head of the astronomical observatory at Ujjain, which was the leading centre of mathematical sciences in India. Forming part of his Sanskrit magnum opus Siddhānta Shiromani, the present work is his treatise on arithmetic, including coverage of geometry. It was first published in English in 1816 after being translated by the East India Company surgeon John Taylor (d.1821). Used as a textbook in India for centuries, it provides the basic mathematics needed for astronomy. Topics covered include arithmetical terms, plane geometry, solid geometry and indeterminate equations. Of enduring interest in the history of mathematics, this work also contains Bhascara's pictorial proof of Pythagoras' theorem.
Līlāvatī of Bhāskarācārya
Author: Bhāskarācārya
Publisher: Motilal Banarsidass Publ.
ISBN: 9788120814202
Category : Mathematics
Languages : en
Pages : 240
Book Description
In 1150 AD, Bhaskaracarya (b. 1114 AD), renowned mathematician and astronomer of Vedic tradition composed Lilavati as the first part of his larger work called Siddhanta Siromani, a comprehensive exposition of arithmetic, algebra, geometry, mensuration, number theory and related topics. Lilavati has been used as a standard textbook for about 800 years. This lucid, scholarly and literary presentation has been translated into several languages of the world. Bhaskaracarya himself never gave any derivations of his formulae. N.H. Phadke (1902-1973) worked hard to construct proofs of several mathematical methods and formulae given in original Lilavati. The present work is an enlargement of his Marathi work and attempts a thorough mathematical explanation of definitions, formulae, short cuts and methodology as intended by Bhaskara. Stitches are followed by literal translations so that the reader can enjoy and appreciate the beauty of accurate and musical presentation in Lilavati. The book is useful to school going children, sophomores, teachers, scholars, historians and those working for cause of mathematics.
Publisher: Motilal Banarsidass Publ.
ISBN: 9788120814202
Category : Mathematics
Languages : en
Pages : 240
Book Description
In 1150 AD, Bhaskaracarya (b. 1114 AD), renowned mathematician and astronomer of Vedic tradition composed Lilavati as the first part of his larger work called Siddhanta Siromani, a comprehensive exposition of arithmetic, algebra, geometry, mensuration, number theory and related topics. Lilavati has been used as a standard textbook for about 800 years. This lucid, scholarly and literary presentation has been translated into several languages of the world. Bhaskaracarya himself never gave any derivations of his formulae. N.H. Phadke (1902-1973) worked hard to construct proofs of several mathematical methods and formulae given in original Lilavati. The present work is an enlargement of his Marathi work and attempts a thorough mathematical explanation of definitions, formulae, short cuts and methodology as intended by Bhaskara. Stitches are followed by literal translations so that the reader can enjoy and appreciate the beauty of accurate and musical presentation in Lilavati. The book is useful to school going children, sophomores, teachers, scholars, historians and those working for cause of mathematics.
A treatise of fluxions
Author: Colin MacLaurin
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 480
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 480
Book Description
Easy Mathematics; Or, Arithmetic and Algebra for General Readers
Author: Oliver Lodge
Publisher: Legare Street Press
ISBN: 9781019841860
Category :
Languages : en
Pages : 0
Book Description
This instructional book offers a thorough introduction to the basics of mathematics, including arithmetic and algebra. Lodge's clear and concise explanations make it easy for readers of all levels to grasp the fundamental concepts of these essential subjects. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Legare Street Press
ISBN: 9781019841860
Category :
Languages : en
Pages : 0
Book Description
This instructional book offers a thorough introduction to the basics of mathematics, including arithmetic and algebra. Lodge's clear and concise explanations make it easy for readers of all levels to grasp the fundamental concepts of these essential subjects. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127
Author: Gerd Faltings
Publisher: Princeton University Press
ISBN: 1400882478
Category : Mathematics
Languages : en
Pages : 113
Book Description
The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Publisher: Princeton University Press
ISBN: 1400882478
Category : Mathematics
Languages : en
Pages : 113
Book Description
The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Universal Arithmetick: Or, a Treatise of Arithmetical Composition and Resolution
Author: Isaac Newton
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 308
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 308
Book Description
The Arithmetic of Infinitesimals
Author: John Wallis
Publisher: Springer Science & Business Media
ISBN: 1475743122
Category : Mathematics
Languages : en
Pages : 226
Book Description
John Wallis (1616-1703) was the most influential English mathematician prior to Newton. He published his most famous work, Arithmetica Infinitorum, in Latin in 1656. This book studied the quadrature of curves and systematised the analysis of Descartes and Cavelieri. Upon publication, this text immediately became the standard book on the subject and was frequently referred to by subsequent writers. This will be the first English translation of this text ever to be published.
Publisher: Springer Science & Business Media
ISBN: 1475743122
Category : Mathematics
Languages : en
Pages : 226
Book Description
John Wallis (1616-1703) was the most influential English mathematician prior to Newton. He published his most famous work, Arithmetica Infinitorum, in Latin in 1656. This book studied the quadrature of curves and systematised the analysis of Descartes and Cavelieri. Upon publication, this text immediately became the standard book on the subject and was frequently referred to by subsequent writers. This will be the first English translation of this text ever to be published.
Fleeting Footsteps
Author: Lay Yong Lam
Publisher: World Scientific
ISBN: 9812567259
Category : Mathematics
Languages : en
Pages : 266
Book Description
The HinduOCoArabic numeral system (1, 2, 3, ...) is one of mankind''sgreatest achievements and one of its most commonly usedinventions. How did it originate? Those who have written about thenumeral system have hypothesized that it originated in India; however, there is little evidence to support this claim. This book provides considerable evidence to show that theHinduOCoArabic numeral system, despite its commonly accepted name, has its origins in the Chinese rod numeral system. This system waswidely used in China from antiquity till the 16th century. It was usedby officials, astronomers, traders and others to perform addition, subtraction, multiplication, division and other arithmetic operations, and also used by mathematicians to develop arithmetic andalgebra. Based on this system, numerous mathematical treatises werewritten."
Publisher: World Scientific
ISBN: 9812567259
Category : Mathematics
Languages : en
Pages : 266
Book Description
The HinduOCoArabic numeral system (1, 2, 3, ...) is one of mankind''sgreatest achievements and one of its most commonly usedinventions. How did it originate? Those who have written about thenumeral system have hypothesized that it originated in India; however, there is little evidence to support this claim. This book provides considerable evidence to show that theHinduOCoArabic numeral system, despite its commonly accepted name, has its origins in the Chinese rod numeral system. This system waswidely used in China from antiquity till the 16th century. It was usedby officials, astronomers, traders and others to perform addition, subtraction, multiplication, division and other arithmetic operations, and also used by mathematicians to develop arithmetic andalgebra. Based on this system, numerous mathematical treatises werewritten."
The Book of Prime Number Records
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 1468499386
Category : Mathematics
Languages : en
Pages : 492
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
Publisher: Springer Science & Business Media
ISBN: 1468499386
Category : Mathematics
Languages : en
Pages : 492
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
Fibonacci’s Liber Abaci
Author: Laurence Sigler
Publisher: Springer Science & Business Media
ISBN: 1461300797
Category : Mathematics
Languages : en
Pages : 736
Book Description
First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods.
Publisher: Springer Science & Business Media
ISBN: 1461300797
Category : Mathematics
Languages : en
Pages : 736
Book Description
First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods.