A Thermal Inertia Approach to Precision Irrigation Using Unmanned Aerial Vehicles Coupled with High-resolution Multispectral Imagery

A Thermal Inertia Approach to Precision Irrigation Using Unmanned Aerial Vehicles Coupled with High-resolution Multispectral Imagery PDF Author: Kevin James Wienhold
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Get Book Here

Book Description
Soil moisture is a critical variable in the optimization of irrigation scheduling in water resources management. Despite using tens to hundreds of thousands of gallons of water each day, many golf courses rely on a sparse network of point measurements to estimate irrigation requirements for turfgrass management. This study describes a novel system known as Precision Irrigation Soil Moisture Mapper (PrISMM) in which an unmanned aerial vehicle equipped with multispectral sensors is used to estimate volumetric water content (VWC) at a golf course using a thermal inertia approach. PrISMM consists of three central components, including (1) highresolution thermal and optical remotely-sensed data, (2) site-specific soil analysis, and (3) surface energy balance modeling. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course in north central Texas using PrISMM. Multispectral data are collected during the fall of 2017 in the visible, near infrared and longwave infrared (thermal) spectrum using a UAV capable of rapid and safe deployment for daily time-series estimates. Each data set consists of two flights collected on the same day, including a morning and midday flight. Diurnal temperature variations were then related to ground heat flux to derive thermal inertia. Using thermal and physical soil properties, thermal inertia estimates are converted to daily VWC estimates with a resolution of 8.6 cm. The accuracy of PrISMM is quantified using ground truthing with a time domain reflectometry soil moisture sensor. The model produces good estimates for VWC with an average coefficient of correlation of (r) = 0.89 and coefficient of determination of (R2 ) = 0.79. Findings from this study indicate that PrISMM offers superior spatial and temporal resolution compared to in situ methods and may be implemented to precisely irrigate urban landscapes, thus saving millions of gallons of water annually.

A Thermal Inertia Approach to Precision Irrigation Using Unmanned Aerial Vehicles Coupled with High-resolution Multispectral Imagery

A Thermal Inertia Approach to Precision Irrigation Using Unmanned Aerial Vehicles Coupled with High-resolution Multispectral Imagery PDF Author: Kevin James Wienhold
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Get Book Here

Book Description
Soil moisture is a critical variable in the optimization of irrigation scheduling in water resources management. Despite using tens to hundreds of thousands of gallons of water each day, many golf courses rely on a sparse network of point measurements to estimate irrigation requirements for turfgrass management. This study describes a novel system known as Precision Irrigation Soil Moisture Mapper (PrISMM) in which an unmanned aerial vehicle equipped with multispectral sensors is used to estimate volumetric water content (VWC) at a golf course using a thermal inertia approach. PrISMM consists of three central components, including (1) highresolution thermal and optical remotely-sensed data, (2) site-specific soil analysis, and (3) surface energy balance modeling. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course in north central Texas using PrISMM. Multispectral data are collected during the fall of 2017 in the visible, near infrared and longwave infrared (thermal) spectrum using a UAV capable of rapid and safe deployment for daily time-series estimates. Each data set consists of two flights collected on the same day, including a morning and midday flight. Diurnal temperature variations were then related to ground heat flux to derive thermal inertia. Using thermal and physical soil properties, thermal inertia estimates are converted to daily VWC estimates with a resolution of 8.6 cm. The accuracy of PrISMM is quantified using ground truthing with a time domain reflectometry soil moisture sensor. The model produces good estimates for VWC with an average coefficient of correlation of (r) = 0.89 and coefficient of determination of (R2 ) = 0.79. Findings from this study indicate that PrISMM offers superior spatial and temporal resolution compared to in situ methods and may be implemented to precisely irrigate urban landscapes, thus saving millions of gallons of water annually.

High Resolution Multi-spectral Imagery and Learning Machines in Precision Irrigation Water Management

High Resolution Multi-spectral Imagery and Learning Machines in Precision Irrigation Water Management PDF Author: Leila Hassan-Esfahani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The current study has been conducted in response to the growing problem of water scarcity and the need for more effective methods of irrigation water management. Remote sensing techniques have been used to match spatially and temporally distributed crop water demand to water application rates. Remote sensing approaches using Landsat imagery have been applied to estimate the components of a soil water balance model for an agricultural field by determining daily values of surface/root-zone soil moisture, evapotranspiration rates, and losses and by developing a forecasting model to generate optimal irrigation application information on a daily basis. Incompatibility of coarse resolution Landsat imagery (30m by 30m) with heterogeneities within the agricultural field and potential underestimation of field variations led the study to its main objective, which was to develop models capable of representing spatial and temporal variations within the agricultural field at a compatible resolution with farming management activities. These models support establishing real-time management of irrigation water scheduling and application. The AggieAirTM Minion autonomous aircraft is a remote sensing platform developed by the Utah Water Research Laboratory at Utah State University. It is a completely autonomous airborne platform that captures high-resolution multi-spectral images in the visual, near infrared, and thermal infrared bands at 15cm resolution. AggieAir flew over the study area on four dates in 2013 that were coincident with Landsat overflights and provided similar remotely sensed data at much finer resolution. These data, in concert with state-of-the-art supervised learning machine techniques and field measurements, have been used to model surface and root zone soil volumetric water content at 15cm resolution. The information provided by this study has the potential to give farmers greater precision in irrigation water allocation and scheduling.

Modelling and Management of Irrigation System

Modelling and Management of Irrigation System PDF Author: Juan Antonio Rodríguez Díaz
Publisher: MDPI
ISBN: 3039287907
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
Irrigation is becoming an activity of precision, where combining information collected from various sources is necessary to optimally manage resources. New management strategies, such as big data techniques, sensors, artificial intelligence, unmanned aerial vehicles (UAV), and new technologies in general, are becoming more relevant every day. As such, modeling techniques, both at the water distribution network and the farm levels, will be essential to gather information from various sources and offer useful recommendations for decision-making processes. In this book, 10 high quality papers were selected that cover a wide range of issues that are relevant to the different aspects related to irrigation management: water source and distribution network, plot irrigation systems, and crop water management.

Signals in the Soil

Signals in the Soil PDF Author: Abdul Salam
Publisher: Springer Nature
ISBN: 3030508617
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
This book provides an in-depth coverage of the most recent developments in the field of wireless underground communications, from both theoretical and practical perspectives. The authors identify technical challenges and discuss recent results related to improvements in wireless underground communications and soil sensing in Internet of Underground Things (IOUT). The book covers both existing network technologies and those currently in development in three major areas of SitS: wireless underground communications, subsurface sensing, and antennas in the soil medium. The authors explore novel applications of Internet of Underground Things in digital agriculture and autonomous irrigation management domains. The book is relevant to wireless researchers, academics, students, and decision agriculture professionals. The contents of the book are arranged in a comprehensive and easily accessible format. Focuses on fundamental issues of wireless underground communication and subsurface sensing; Includes advanced treatment of IOUT custom applications of variable-rate technologies in the field of decision agriculture, and covers protocol design and wireless underground channel modeling; Provides a detailed set of path loss, antenna, and wireless underground channel measurements in various novel Signals in the Soil (SitS) testbed settings.

An Evaluation of Unmanned Aerial System Multispectral and Thermal Infrared Data as Information for Agricultural Crop and Irrigation Management

An Evaluation of Unmanned Aerial System Multispectral and Thermal Infrared Data as Information for Agricultural Crop and Irrigation Management PDF Author: Mitchell S. Maguire
Publisher:
ISBN:
Category :
Languages : en
Pages : 153

Get Book Here

Book Description
Spatial irrigation management has been steadily advancing over the last several years. A current issue with managing irrigation spatially on sub-field scale is the inability to readily collect the spatial field data necessary to properly manage irrigation. Multispectral and thermal infrared imagery used in informing irrigation management decisions was previously collected by satellite and manned aircraft remote sensing platforms. These remote sensing platforms pose issues concerning economic feasibility, revisit intervals, and weather factors that inhibit the collection of data. Recent developments in unmanned aerial systems, which provide an additional means of collecting multispectral and thermal infrared data, have the potential to provide supplemental data during periods of missing satellite data or to completely replace satellite and manned aircraft remote sensing platforms. As unmanned aerial system remote sensing platforms are a relatively new technology, there are uncertainties regarding how these systems compare to previous and more well-known remote sensing platforms. Some of these uncertainties include how to properly collect, process, and calibrate data acquired by these systems so that the end products are accurate and can by used in scientific applications. This work evaluated two different unmanned aerial systems with integrated multispectral and thermal infrared cameras to determine the best methods of collecting, processing, and calibrating data. Three different multispectral image calibration methods were evaluated and compared against Landsat satellite reflectance products and ground-based reflectance tarps. The thermal infrared image calibration consisted of correcting for emissivity and atmospheric effects, and was compared to in-field infrared thermometers. Relationships for estimating maize leaf area index, crop height, and fraction of vegetation cover were redefined and evaluated based on various vegetation indices derived from the unmanned aerial system calibrated multispectral imagery. This work also addressed some of the challenges and obstacles related to deploying unmanned aerial systems for remote sensing in agricultural applications.

Thermal Infrared Remote Sensing

Thermal Infrared Remote Sensing PDF Author: Claudia Kuenzer
Publisher: Springer Science & Business Media
ISBN: 9400766394
Category : Technology & Engineering
Languages : en
Pages : 547

Get Book Here

Book Description
This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techniques for analyzing thermal data. Ground-breaking chapters on applications present a wide variety of case studies leading to a deepened understanding of land and sea surface temperature dynamics, urban heat island effects, forest fires, volcanic eruption precursors, underground coal fires, geothermal systems, soil moisture variability, and temperature-based mineral discrimination. ‘Thermal Infrared Remote Sensing: Sensors, Methods, Applications’ is unique because of the large field it spans, the potentials it reveals, and the detail it provides. This book is an indispensable volume for scientists, lecturers, and decision makers interested in thermal infrared technology, methods, and applications.

Handbook of Agricultural Geophysics

Handbook of Agricultural Geophysics PDF Author: Barry Allred
Publisher: CRC Press
ISBN: 142001935X
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
Precision farming, site infrastructure assessment, hydrologic monitoring, and environmental investigations- these are just a few current and potential uses of near-surface geophysical methods in agriculture. Responding to the growing demand for this technology, the Handbook of Agricultural Geophysics supplies a clear, concise overview of nea

Subsurface Sensing

Subsurface Sensing PDF Author: Ahmet S. Turk
Publisher: John Wiley & Sons
ISBN: 0470608560
Category : Science
Languages : en
Pages : 916

Get Book Here

Book Description
This book provides readers with a solid understanding of the capabilities and limitations of the techniques used for buried object detection. Presenting theory along with applications and the existing technology, it covers the most recent developments in hardware and software technologies of sensor systems with a focus on primary sensors such as Ground Penetrating Radar (GPR) and auxiliary sensors such as Nuclear Quadruple Resonance (NQR). It is essential reading for students, practitioners, specialists, and academicians involved in the design and implementation of buried object detection sensors.

Sensing Technologies For Precision Irrigation

Sensing Technologies For Precision Irrigation PDF Author: Dubravko Ćulibrk
Publisher: Springer Science & Business Media
ISBN: 1461483298
Category : Technology & Engineering
Languages : en
Pages : 102

Get Book Here

Book Description
This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

UAV Sensors for Environmental Monitoring

UAV Sensors for Environmental Monitoring PDF Author: Felipe Gonzalez Toro
Publisher: MDPI
ISBN: 3038427535
Category : Technology & Engineering
Languages : en
Pages : 671

Get Book Here

Book Description
This book is a printed edition of the Special Issue "UAV Sensors for Environmental Monitoring" that was published in Sensors