A Temporally Adaptive Hybridized Discontinuous Galerkin Method for Instationary Compressible Flows

A Temporally Adaptive Hybridized Discontinuous Galerkin Method for Instationary Compressible Flows PDF Author: Alexander Jaust
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 PDF Author: Robert M. Kirby
Publisher: Springer
ISBN: 3319198009
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.

High-order (hybridized) Discontinuous Galerkin Method for Geophysical Flows

High-order (hybridized) Discontinuous Galerkin Method for Geophysical Flows PDF Author: Shinhoo Kang
Publisher:
ISBN:
Category :
Languages : en
Pages : 384

Get Book Here

Book Description
As computational research has grown, simulation has become a standard tool in many fields of academic and industrial areas. For example, computational fluid dynamics (CFD) tools in aerospace and research facilities are widely used to evaluate the aerodynamic performance of aircraft or wings. Weather forecasts are highly dependent on numerical weather prediction (NWP) model. However, it is still difficult to simulate the complex physical phenomena of a wide range of length and time scales with modern computational resources. In this study, we develop a robust, efficient and high-order accurate numerical methods and techniques to tackle the challenges. First, we use high-order spatial discretization using (hybridized) discontinuous Galerkin (DG) methods. The DG method combines the advantages of finite volume and finite element methods. As such, it is well-suited to problems with large gradients including shocks and with complex geometries, and large-scale simulations. However, DG typically has many degrees-of-freedoms. To mitigate the expense, we use hybridized DG (HDG) method that introduces new “trace unknowns” on the mesh skeleton (mortar interfaces) to eliminate the local “volume unknowns” with static condensation procedure and reduces globally coupled system when implicit time-stepping is required. Also, since the information between the elements is exchanged through the mesh skeleton, the mortar interfaces can be used as a glue to couple multi-phase regions, e.g., solid and fluid regions, or non-matching grids, e.g., a rotating mesh and a stationary mesh. That is the HDG method provides an efficient and flexible coupling environment compared to standard DG methods. Second, we develop an HDG-DG IMEX scheme for an efficient time integrating scheme. The idea is to divide the governing equations into stiff and nonstiff parts, implicitly treat the former with HDG methods, and explicitly treat the latter with DG methods. The HDG-DG IMEX scheme facilitates high-order temporal and spatial solutions, avoiding too small a time step. Numerical results show that the HDG-DG IMEX scheme is comparable to an explicit Runge-Kutta DG scheme in terms of accuracy while allowing for much larger timestep sizes. We also numerically observe that IMEX HDG-DG scheme can be used as a tool to suppress the high-frequency modes such as acoustic waves or fast gravity waves in atmospheric or ocean models. In short, IMEX HDG-DG methods are attractive for applications in which a fast and stable solution is important while permitting inaccurate processing of the fast modes. Third, we also develop an EXPONENTIAL DG scheme for an efficient time integrators. Similar to the IMEX method, the governing equations are separated into linear and nonlinear parts, then the two parts are spatially discretized with DG methods. Next, we analytically integrate the linear term and approximate the nonlinear term with respect to time. This method accurately handles the fast wave modes in the linear operator. To efficiently evaluate a matrix exponential, we employ the cutting-edge adaptive Krylov subspace method. Finally, we develop a sliding-mesh interface by combining nonconforming treatment and the arbitrary Lagrangian-Eulerian (ALE) scheme for simulating rotating flows, which are important to estimate the characteristics of a rotating wind turbine or understanding vortical structures shown in atmospheric or astronomical phenomena. To integrate the rotating motion of the domain, we use the ALE formulation to map the governing equation to the stationary reference domain and introduce mortar interfaces between the stationary mesh and the rotating mesh. The mortar structure on the sliding interface changes dynamically as the mesh rotates

Discontinuous Galerkin Method

Discontinuous Galerkin Method PDF Author: Vít Dolejší
Publisher: Springer
ISBN: 3319192671
Category : Mathematics
Languages : en
Pages : 575

Get Book Here

Book Description
The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

A Discontinuous Galerkin Method for the Solution of Compressible Flows

A Discontinuous Galerkin Method for the Solution of Compressible Flows PDF Author: Cristian Biotto
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries

A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries PDF Author: Stephan Krämer-Eis
Publisher: Cuvillier Verlag
ISBN: 3736986351
Category : Technology & Engineering
Languages : en
Pages : 128

Get Book Here

Book Description
Um die komplexe Physik in kompressiblen Strömungen genauer zu verstehen, kommen vermehrt Simulationen zum Einsatz. Jedoch können weit verbreitete kommerzielle Softwarepakete die Physik aufgrund ihrer niedrigen Genauigkeit oft nicht korrekt erfassen. In dieser Arbeit wird eine diskontinuierliche Galerkin Methode mit hoher Ordnung entwickelt, welche eine hohe Genauigkeit erzielt. Dabei werden insbesondere zwei Probleme, die im Kontext von Verfahren mit hoher Ordnung auftreten, behandelt. Zum einen wird die Gittergenerierung durch das Verwenden einer Immersed Boundary Methode deutlich vereinfacht. Dies bedeutet, dass die Problemgeometrie aus einem deutlich einfacheren Hintergrundgitter herausgeschnitten wird. Die Geometrie wird mit Hilfe einer Level-Set Funktion dargestellt, und die Integration auf den entstehenden geschnittenen Zellen wird mittels einer hierarchischen Moment-Fitting Quadratur durchgeführt. Das Problem der sehr kleinen oder stark gekrümmten Zellen wird durch Zellagglomeration gelöst. Zum zweiten wird die starke Zeitschrittbeschränkung durch anisotrope Gitter mit Hilfe eines lokalen Zeitschrittverfahrens behoben. Diverse numerische Experimente bestätigen die hohe Genauigkeit, Effizienz und geometrische Flexibilität der vorgestellten Methode.

A Multi-resolution Discontinuous Galerkin Method for Unsteady Compressible Flows

A Multi-resolution Discontinuous Galerkin Method for Unsteady Compressible Flows PDF Author: Andrew Brian Shelton
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages :

Get Book Here

Book Description
The issue of local scale and smoothness presents a crucial and daunting challenge for numerical simulation methods in fluid dynamics. Yet in the interests of both accuracy and economy, how can one devise a general technique that efficiently resolves flow features of consequence and discriminates against others which are either ``negligible' or amenable to ``universal' modeling? This is particularly difficult because geometries of engineering interest are complex and multi-dimensional, precluding a priori knowledge of the flowfield. To address this challenge, the current work employs wavelet theory for the local scale decomposition of functions, which provides a natural mechanism for the adaptive compression of data. The resulting technique is known as the Multi-Resolution Discontinuous Galerkin (MRDG) method.

A Hybridized Discontinuous Petrov-Galerkin Scheme for Compressible Flows

A Hybridized Discontinuous Petrov-Galerkin Scheme for Compressible Flows PDF Author: David Moro-Ludeña
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
The Hybridized Discontinuous Petrov-Galerkin scheme (HDPG) for compressible flows is presented. The HDPG method stems from a combination of the Hybridized Discontinuous Galerkin (HDG) method and the theory of the optimal test functions, suitably modified to enforce the conservativity at the element level. The new scheme maintains the same number of globally coupled degrees of freedom as the HDG method while increasing the stability in the presence of discontinuities or under-resolved features. The new scheme has been successfully tested in several problems involving shocks such as Burgers equation and the Navier-Stokes equations and delivers solutions with reduced oscillation at the shock. When combined with artificial viscosity, the oscillation can be completely eliminated using one order of magnitude less viscosity than that required by other Finite Element methods. Also, convergence studies in the sequence of meshes proposed by Peterson [49] show that, unlike other DG methods, the HDPG method is capable of breaking the suboptimal k+1/2 rate of convergence for the convective problem and thus achieve optimal k+1 convergence.

A Parallel Implicit Reconstructed Discontinuous Galerkin Method for Compressible Flows on Hybrid Grids

A Parallel Implicit Reconstructed Discontinuous Galerkin Method for Compressible Flows on Hybrid Grids PDF Author: Yidong Xia
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description


A Set of Parallel, Implicit Methods for a Reconstructed Discontinuous Galerkin Method for Compressible Flows on 3D Hybrid Grids

A Set of Parallel, Implicit Methods for a Reconstructed Discontinuous Galerkin Method for Compressible Flows on 3D Hybrid Grids PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the P1 element approximation, resulting in a huge reduction of memory requirement compared with DG (P2). Also, three approaches -- analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flow solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance.