A Source Book in Classical Analysis

A Source Book in Classical Analysis PDF Author: Garrett Birkhoff
Publisher:
ISBN: 9780783744483
Category : Mathematical analysis
Languages : en
Pages : 470

Get Book Here

Book Description
An understanding of the developments in classical analysis during the nineteenth century is vital to a full appreciation of the history of twentieth-century mathematical thought. It was during the nineteenth century that the diverse mathematical formulae of the eighteenth century were systematized and the properties of functions of real and complex variables clearly distinguished; and it was then that the calculus matured into the rigorous discipline of today, becoming in the process a dominant influence on mathematics and mathematical physics. This Source Book, a sequel to D. J. Struik's Source Book in Mathematics, 1200-1800, draws together more than eighty selections from the writings of the most influential mathematicians of the period. Thirteen chapters, each with an introduction by the editor, highlight the major developments in mathematical thinking over the century. All material is in English, and great care has been taken to maintain a high standard of accuracy both in translation and in transcription. Of particular value to historians and philosophers of science, the Source Book should serve as a vital reference to anyone seeking to understand the roots of twentieth-century mathematical thought.

Invitation to Classical Analysis

Invitation to Classical Analysis PDF Author: Peter Duren
Publisher: American Mathematical Soc.
ISBN: 1470463210
Category : Education
Languages : en
Pages : 416

Get Book Here

Book Description
This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differential equations including power series solutions at regular singular points, Bessel functions, hypergeometric functions, and Sturm comparison theory. Preliminary chapters offer rapid reviews of basic principles and further background material such as infinite products and commonly applied inequalities. This book is designed for individual study but can also serve as a text for second-semester courses in advanced calculus. Each chapter concludes with an abundance of exercises. Historical notes discuss the evolution of mathematical ideas and their relevance to physical applications. Special features are capsule scientific biographies of the major players and a gallery of portraits. Although this book is designed for undergraduate students, others may find it an accessible source of information on classical topics that underlie modern developments in pure and applied mathematics.

Excursions in Classical Analysis

Excursions in Classical Analysis PDF Author: Hongwei Chen
Publisher: American Mathematical Soc.
ISBN: 0883859351
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.

Pi: A Source Book

Pi: A Source Book PDF Author: J.L. Berggren
Publisher: Springer
ISBN: 1475742177
Category : Mathematics
Languages : en
Pages : 812

Get Book Here

Book Description
This book documents the history of pi from the dawn of mathematical time to the present. One of the beauties of the literature on pi is that it allows for the inclusion of very modern, yet accessible, mathematics. The articles on pi collected herein fall into various classes. First and foremost there is a selection from the mathematical and computational literature of four millennia. There is also a variety of historical studies on the cultural significance of the number. Additionally, there is a selection of pieces that are anecdotal, fanciful, or simply amusing. For this new edition, the authors have updated the original material while adding new material of historical and cultural interest. There is a substantial exposition of the recent history of the computation of digits of pi, a discussion of the normality of the distribution of the digits, and new translations of works by Viete and Huygen.

Pi: A Source Book

Pi: A Source Book PDF Author: Jonathan M. Borwein
Publisher: Springer Science & Business Media
ISBN: 1475732406
Category : Mathematics
Languages : en
Pages : 754

Get Book Here

Book Description
Our intention in this collection is to provide, largely through original writings, an ex tended account of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious, and sometimes the most whimsical aspects of mathematics. A surprising amount of the most important mathematics and a signifi cant number of the most important mathematicians have contributed to its unfolding directly or otherwise. Pi is one of the few mathematical concepts whose mention evokes a response of recog nition and interest in those not concerned professionally with the subject. It has been a part of human culture and the educated imagination for more than twenty-five hundred years. The computation of pi is virtually the only topic from the most ancient stratum of mathematics that is still of serious interest to modern mathematical research. To pursue this topic as it developed throughout the millennia is to follow a thread through the history of mathematics that winds through geometry, analysis and special functions, numerical analysis, algebra, and number theory. It offers a subject that provides mathe maticians with examples of many current mathematical techniques as weIl as a palpable sense of their historical development. Why a Source Book? Few books serve wider potential audiences than does a source book. To our knowledge, there is at present no easy access to the bulk of the material we have collected.

Foundations of Analysis

Foundations of Analysis PDF Author: Edmund Landau
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.

Fourier Integrals in Classical Analysis

Fourier Integrals in Classical Analysis PDF Author: Christopher D. Sogge
Publisher: Cambridge University Press
ISBN: 1107120071
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.

A Source Book for Mediæval History

A Source Book for Mediæval History PDF Author: Oliver J. Thatcher
Publisher: Good Press
ISBN:
Category : History
Languages : en
Pages : 512

Get Book Here

Book Description
A Source Book for Mediæval History is a scholarly piece by Oliver J. Thatcher. It covers all major historical events and leaders from the Germania of Tacitus in the 1st century to the decrees of the Hanseatic League in the 13th century.

Problems and Theorems in Classical Set Theory

Problems and Theorems in Classical Set Theory PDF Author: Peter Komjath
Publisher: Springer Science & Business Media
ISBN: 0387362193
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643

Get Book Here

Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.