Author: Jan Sokolowski
Publisher: Springer Science & Business Media
ISBN: 3642581064
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.
Introduction to Shape Optimization
Author: Jan Sokolowski
Publisher: Springer Science & Business Media
ISBN: 3642581064
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.
Publisher: Springer Science & Business Media
ISBN: 3642581064
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.
Shape Optimization Problems
Author: Hideyuki Azegami
Publisher: Springer Nature
ISBN: 9811576181
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
Publisher: Springer Nature
ISBN: 9811576181
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
Shape Optimization by the Homogenization Method
Author: Gregoire Allaire
Publisher: Springer Science & Business Media
ISBN: 1468492861
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.
Publisher: Springer Science & Business Media
ISBN: 1468492861
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.
Variational Methods in Shape Optimization Problems
Author: Dorin Bucur
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218
Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218
Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.
Introduction to Shape Optimization
Author: J. Haslinger
Publisher: SIAM
ISBN: 9780898718690
Category : Mathematics
Languages : en
Pages : 291
Book Description
The efficiency and reliability of manufactured products depend on, among other things, geometrical aspects; it is therefore not surprising that optimal shape design problems have attracted the interest of applied mathematicians and engineers. This self-contained, elementary introduction to the mathematical and computational aspects of sizing and shape optimization enables readers to gain a firm understanding of the theoretical and practical aspects so they may confidently enter this field. Introduction to Shape Optimization: Theory, Approximation, and Computation treats sizing and shape optimization comprehensively, covering everything from mathematical theory (existence analysis, discretizations, and convergence analysis for discretized problems) through computational aspects (sensitivity analysis, numerical minimization methods) to industrial applications. Applications include contact stress minimization for elasto-plastic bodies, multidisciplinary optimization of an airfoil, and shape optimization of a dividing tube. By presenting sizing and shape optimization in an abstract way, the authors are able to use a unified approach in the mathematical analysis for a large class of optimization problems in various fields of physics. Audience: the book is written primarily for students of applied mathematics, scientific computing, and mechanics. Most of the material is directed toward graduate students, although a portion of it is suitable for senior undergraduate students. Readers are assumed to have some knowledge of partial differential equations and their numerical solution, as well as modern programming language such as C++ Fortran 90.
Publisher: SIAM
ISBN: 9780898718690
Category : Mathematics
Languages : en
Pages : 291
Book Description
The efficiency and reliability of manufactured products depend on, among other things, geometrical aspects; it is therefore not surprising that optimal shape design problems have attracted the interest of applied mathematicians and engineers. This self-contained, elementary introduction to the mathematical and computational aspects of sizing and shape optimization enables readers to gain a firm understanding of the theoretical and practical aspects so they may confidently enter this field. Introduction to Shape Optimization: Theory, Approximation, and Computation treats sizing and shape optimization comprehensively, covering everything from mathematical theory (existence analysis, discretizations, and convergence analysis for discretized problems) through computational aspects (sensitivity analysis, numerical minimization methods) to industrial applications. Applications include contact stress minimization for elasto-plastic bodies, multidisciplinary optimization of an airfoil, and shape optimization of a dividing tube. By presenting sizing and shape optimization in an abstract way, the authors are able to use a unified approach in the mathematical analysis for a large class of optimization problems in various fields of physics. Audience: the book is written primarily for students of applied mathematics, scientific computing, and mechanics. Most of the material is directed toward graduate students, although a portion of it is suitable for senior undergraduate students. Readers are assumed to have some knowledge of partial differential equations and their numerical solution, as well as modern programming language such as C++ Fortran 90.
Mathematical Analysis of Continuum Mechanics and Industrial Applications
Author: Hiromichi Itou
Publisher: Springer
ISBN: 9789811096723
Category : Science
Languages : en
Pages : 231
Book Description
This book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applications. Leading researchers with profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry provide the contents of this book. They help readers to understand that mathematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.
Publisher: Springer
ISBN: 9789811096723
Category : Science
Languages : en
Pages : 231
Book Description
This book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applications. Leading researchers with profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry provide the contents of this book. They help readers to understand that mathematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.
Shape Optimization and Free Boundaries
Author: Michel C. Delfour
Publisher: Springer Science & Business Media
ISBN: 9401127107
Category : Mathematics
Languages : en
Pages : 469
Book Description
Shape optimization deals with problems where the design or control variable is no longer a vector of parameters or functions but the shape of a geometric domain. They include engineering applications to shape and structural optimization, but also original applications to image segmentation, control theory, stabilization of membranes and plates by boundary variations, etc. Free and moving boundary problems arise in an impressingly wide range of new and challenging applications to change of phase. The class of problems which are amenable to this approach can arise from such diverse disciplines as combustion, biological growth, reactive geological flows in porous media, solidification, fluid dynamics, electrochemical machining, etc. The objective and orginality of this NATO-ASI was to bring together theories and examples from shape optimization, free and moving boundary problems, and materials with microstructure which are fundamental to static and dynamic domain and boundary problems.
Publisher: Springer Science & Business Media
ISBN: 9401127107
Category : Mathematics
Languages : en
Pages : 469
Book Description
Shape optimization deals with problems where the design or control variable is no longer a vector of parameters or functions but the shape of a geometric domain. They include engineering applications to shape and structural optimization, but also original applications to image segmentation, control theory, stabilization of membranes and plates by boundary variations, etc. Free and moving boundary problems arise in an impressingly wide range of new and challenging applications to change of phase. The class of problems which are amenable to this approach can arise from such diverse disciplines as combustion, biological growth, reactive geological flows in porous media, solidification, fluid dynamics, electrochemical machining, etc. The objective and orginality of this NATO-ASI was to bring together theories and examples from shape optimization, free and moving boundary problems, and materials with microstructure which are fundamental to static and dynamic domain and boundary problems.
The Isogeometric Boundary Element Method
Author: Gernot Beer
Publisher: Springer Nature
ISBN: 3030233391
Category : Science
Languages : en
Pages : 342
Book Description
This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.
Publisher: Springer Nature
ISBN: 3030233391
Category : Science
Languages : en
Pages : 342
Book Description
This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.
Compressible Navier-Stokes Equations
Author: Pavel Plotnikov
Publisher: Springer Science & Business Media
ISBN: 3034803672
Category : Mathematics
Languages : en
Pages : 470
Book Description
The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.
Publisher: Springer Science & Business Media
ISBN: 3034803672
Category : Mathematics
Languages : en
Pages : 470
Book Description
The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.
MARINE 2011, IV International Conference on Computational Methods in Marine Engineering
Author: Luís Eça
Publisher: Springer Science & Business Media
ISBN: 9400761430
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book contains selected papers from the Fourth International Conference on Computational Methods in Marine Engineering, held at Instituto Superior Técnico, Technical University of Lisbon, Portugal in September 2011. Nowadays, computational methods are an essential tool of engineering, which includes a major field of interest in marine applications, such as the maritime and offshore industries and engineering challenges related to the marine environment and renewable energies. The 2011 Conference included 8 invited plenary lectures and 86 presentations distributed through 10 thematic sessions that covered many of the most relevant topics of marine engineering today. This book contains 16 selected papers from the Conference that cover “CFD for Offshore Applications”, “Fluid-Structure Interaction”, “Isogeometric Methods for Marine Engineering”, “Marine/Offshore Renewable Energy”, “Maneuvering and Seakeeping”, “Propulsion and Cavitation” and “Ship Hydrodynamics”. The papers were selected with the help of the recognized experts that collaborated in the organization of the thematic sessions of the Conference, which guarantees the high quality of the papers included in this book.
Publisher: Springer Science & Business Media
ISBN: 9400761430
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book contains selected papers from the Fourth International Conference on Computational Methods in Marine Engineering, held at Instituto Superior Técnico, Technical University of Lisbon, Portugal in September 2011. Nowadays, computational methods are an essential tool of engineering, which includes a major field of interest in marine applications, such as the maritime and offshore industries and engineering challenges related to the marine environment and renewable energies. The 2011 Conference included 8 invited plenary lectures and 86 presentations distributed through 10 thematic sessions that covered many of the most relevant topics of marine engineering today. This book contains 16 selected papers from the Conference that cover “CFD for Offshore Applications”, “Fluid-Structure Interaction”, “Isogeometric Methods for Marine Engineering”, “Marine/Offshore Renewable Energy”, “Maneuvering and Seakeeping”, “Propulsion and Cavitation” and “Ship Hydrodynamics”. The papers were selected with the help of the recognized experts that collaborated in the organization of the thematic sessions of the Conference, which guarantees the high quality of the papers included in this book.