A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One-and Two-tower Runs of CDMS-II at Soudan

A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One-and Two-tower Runs of CDMS-II at Soudan PDF Author: Reuben Water Ogburn
Publisher:
ISBN:
Category :
Languages : en
Pages : 309

Get Book Here

Book Description

A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One-and Two-tower Runs of CDMS-II at Soudan

A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One-and Two-tower Runs of CDMS-II at Soudan PDF Author: Reuben Water Ogburn
Publisher:
ISBN:
Category :
Languages : en
Pages : 309

Get Book Here

Book Description


A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One- and Two- Tower Runs of CDMS-II at Soudan

A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One- and Two- Tower Runs of CDMS-II at Soudan PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 333

Get Book Here

Book Description
Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector, s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single, combined analysis, with sensitivity to lower-energy interactions, careful control of data quality and stability, and further development of techniques for reconstructing event location and rejecting near-surface interactions from beta decays. They also present a revision to the previously published Run 119 analysis, a demonstration of the feasibility of a low-threshold (1 or 2 keV) analysis of Soudan data, and a review of the literature on charge generation and quenching relevant to the ionization signal.

A Search for Low-mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon-mediated Particle Detectors

A Search for Low-mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon-mediated Particle Detectors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 263

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 886

Get Book Here

Book Description


The Cryogenic Dark Matter Search

The Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

Background Characterization and Discrimination in the Final Analysis of the CDMS II Phase of the Cryogenic Dark Matter Search

Background Characterization and Discrimination in the Final Analysis of the CDMS II Phase of the Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 176

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is designed to detectWeakly-Interacting Massive Particles (WIMPs) in the Milky Way halo. The phase known as CDMS II was performed in the Soudan Underground Laboratory. The final set of CDMS II data, collected in 2007-8 and referred to as Runs 125-8, represents the largest exposure to date for the experiment. We seek collisions between WIMPs and atomic nuclei in disk-shaped germanium and silicon detectors. A key design feature is to keep the rate of collisions from known particles producing WIMP-like signals very small. The largest category of such background is interactions with electrons in the detectors that occur very close to one of the faces of the detector. The next largest category is collisions between energetic neutrons that bypass the experimental shielding and nuclei in the detectors. Analytical efforts to discriminate these backgrounds and to estimate the rate at which such discrimination fails have been refined and improved throughout each phase of CDMS. Next-generation detectors for future phases of CDMS require testing at cryogenic test facilities. One such facility was developed at the University of Minnesota in 2007 and has been used continuously since then to test detectors for the next phase of the experiment, known as SuperCDMS.

The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection PDF Author: Catherine N. Bailey
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the Ơ̐1rst data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c^2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modiƠ̐1cation of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis eƠ̐0ort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment PDF Author: Kevin Ahmad McCarthy
Publisher:
ISBN:
Category :
Languages : en
Pages : 388

Get Book Here

Book Description
Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that ~85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented. 140.23 kg-days of WIMP search data from the silicon detectors in the CDMSII experiment is also analyzed. The resulting upper limits on the WIMP-nucleon crosssection are higher than those published by other experiments at all WIMP masses, and the lowest limit on the WIMP-nucleon cross-section is 1.07*10-42 cm2 at a mass of 60 GeV/c2. These results do provide new and interesting constraints at WIMP masses

A Dark-matter Search Using the Final CDMS II Dataset and a Novel Detector of Surface Radiocontamination

A Dark-matter Search Using the Final CDMS II Dataset and a Novel Detector of Surface Radiocontamination PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 252

Get Book Here

Book Description
Substantial evidence from galaxies, galaxy clusters, and cosmological scales suggests that ~85% of the matter of our universe is invisible. The missing matter, or "dark matter" is likely composed of non-relativistic, non-baryonic particles, which have very rare interactions with baryonic matter and with one another. Among dark matter candidates, Weakly Interacting Massive Particles (WIMPs) are particularly well motivated. In the early universe, thermally produced particles with weak-scale mass and interactions would `freeze out' at the correct density to be dark matter today. Extensions to the Standard Model of particle physics, such as Supersymmetry, which solve gauge hierarchy and coupling unification problems, naturally provide such particles. Interactions of WIMPs with baryons are expected to be rare, but might be detectable in low-noise detectors. The Cryogenic Dark Matter Search (CDMS) experiment uses ionization- and phonon- sensitive germanium particle detectors to search for such interactions. CDMS detectors are operated at the Soudan Underground Laboratory in Minnesota, within a shielded environment to lower cosmogenic and radioactive background. The combination of phonon and ionization signatures from the detectors provides excellent residual-background rejection. This dissertation presents improved techniques for phonon calibration of CDMS II detectors and the analysis of the final CDMS II dataset with 612 kg-days of exposure. We set a limit of 3.8x10$^{-}$44 cm$^{2}$ on WIMP-nucleon spin-independent scattering cross section for a WIMP mass of 70 GeV/c$^{2}$. At the time this analysis was published, these data presented the most stringent limits on WIMP scattering for WIMP masses over 42 GeV/c$^{2}$, ruling out previously unexplored parameter space. Next-generation rare-event searches such as SuperCDMS, COUPP, and CLEAN will be limited in sensitivity, unless they achieve stringent control of the surface radioactive contamination on their detectors. Low-penetrating radiation, such as alpha and beta particles, will mimic signal in these experiments. This dissertation also presents the design and prototyping of a novel detector for surface radiocontaminants, called the BetaCage -- a neon-gas time projection chamber built from radiopure materials and operated underground with shielding similar to CDMS II. The BetaCage will enable beta screening of materials at world-best sensitivity of 10$^{-5}$/cm$^{2}$/keV/day, providing a valuable tool to the physics community.

Energy and Water Development Appropriations For 2006, Part 4B, 109-1 Hearings, *.

Energy and Water Development Appropriations For 2006, Part 4B, 109-1 Hearings, *. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 1444

Get Book Here

Book Description