A Rational Finite Element Basis

A Rational Finite Element Basis PDF Author: Wachspress
Publisher: Academic Press
ISBN: 0080956238
Category : Computers
Languages : en
Pages : 347

Get Book Here

Book Description
A Rational Finite Element Basis

A Rational Finite Element Basis

A Rational Finite Element Basis PDF Author: Wachspress
Publisher: Academic Press
ISBN: 0080956238
Category : Computers
Languages : en
Pages : 347

Get Book Here

Book Description
A Rational Finite Element Basis

A Rational Finite Element Basis

A Rational Finite Element Basis PDF Author:
Publisher:
ISBN: 9781282290105
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
A rational finite element basis.

Rational Bases and Generalized Barycentrics

Rational Bases and Generalized Barycentrics PDF Author: Eugene Wachspress
Publisher: Springer
ISBN: 3319216147
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
This three-part volume explores theory for construction of rational interpolation functions for continuous patchwork approximation. Authored by the namesake of the Wachspress Coordinates, the book develops construction of basis functions for a broad class of elements which have widespread graphics and finite element application. Part one is the 1975 book “A Rational Finite Element Basis” (with minor updates and corrections) written by Dr. Wachspress. Part two describes theoretical advances since 1975 and includes analysis of elements not considered previously. Part three consists of annotated MATLAB programs implementing theory presented in Parts one and two.

The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems PDF Author: Philippe G. Ciarlet
Publisher: SIAM
ISBN: 0898715148
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
This is the only book available that fully analyzes the mathematical foundations of the finite element method. Not only is it valuable reference and introduction to current research, it is also a working textbook for graduate courses in numerical analysis, including useful figures and exercises of varying difficulty.

The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems PDF Author: P.G. Ciarlet
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.

An Introduction to the Mathematical Theory of Finite Elements

An Introduction to the Mathematical Theory of Finite Elements PDF Author: J. T. Oden
Publisher: Courier Corporation
ISBN: 0486142213
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

Finite Element Concepts

Finite Element Concepts PDF Author: Gautam Dasgupta
Publisher: Springer
ISBN: 1493974238
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig’s isoparametric interpolants and Iron’s patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples.

The Intermediate Finite Element Method

The Intermediate Finite Element Method PDF Author: Darrell W. Pepper
Publisher: Routledge
ISBN: 1351410121
Category : Science
Languages : en
Pages : 619

Get Book Here

Book Description
This book is a follow-up to the introductory text written by the same authors. The primary emphasis on this book is linear and nonlinear partial differential equations with particular concentration on the equations of viscous fluid motion. Each chapter describes a particular application of the finite element method and illustrates the concepts through example problems. A comprehensive appendix lists computer codes for 2-D fluid flow and two 3-D transient codes.

Finite Element Analysis

Finite Element Analysis PDF Author: Barna Szabó
Publisher: John Wiley & Sons
ISBN: 9780471502739
Category : Technology & Engineering
Languages : en
Pages : 408

Get Book Here

Book Description
Covers the fundamentals of linear theory of finite elements, from both mathematical and physical points of view. Major focus is on error estimation and adaptive methods used to increase the reliability of results. Incorporates recent advances not covered by other books.

Finite Elements III

Finite Elements III PDF Author: Alexandre Ern
Publisher: Springer Nature
ISBN: 3030573486
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.