Author: Ciro Ciliberto
Publisher: Springer Nature
ISBN: 3030710211
Category : Mathematics
Languages : en
Pages : 327
Book Description
This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.
An Undergraduate Primer in Algebraic Geometry
Author: Ciro Ciliberto
Publisher: Springer Nature
ISBN: 3030710211
Category : Mathematics
Languages : en
Pages : 327
Book Description
This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.
Publisher: Springer Nature
ISBN: 3030710211
Category : Mathematics
Languages : en
Pages : 327
Book Description
This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.
A Primer of Algebraic Geometry
Author: Huishi Li
Publisher: CRC Press
ISBN: 1482270331
Category : Mathematics
Languages : en
Pages : 393
Book Description
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
Publisher: CRC Press
ISBN: 1482270331
Category : Mathematics
Languages : en
Pages : 393
Book Description
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
Geometric Morphometrics for Biologists
Author: Miriam Zelditch
Publisher: Academic Press
ISBN: 0123869048
Category : Mathematics
Languages : en
Pages : 489
Book Description
The first edition of Geometric Morphometrics for Biologists has been the primary resource for teaching modern geometric methods of shape analysis to biologists who have a stronger background in biology than in multivariate statistics and matrix algebra. These geometric methods are appealing to biologists who approach the study of shape from a variety of perspectives, from clinical to evolutionary, because they incorporate the geometry of organisms throughout the data analysis. The second edition of this book retains the emphasis on accessible explanations, and the copious illustrations and examples of the first, updating the treatment of both theory and practice. The second edition represents the current state-of-the-art and adds new examples and summarizes recent literature, as well as provides an overview of new software and step-by-step guidance through details of carrying out the analyses. - Contains updated coverage of methods, especially for sampling complex curves and 3D forms and a new chapter on applications of geometric morphometrics to forensics - Offers a reorganization of chapters to streamline learning basic concepts - Presents detailed instructions for conducting analyses with freely available, easy to use software - Provides numerous illustrations, including graphical presentations of important theoretical concepts and demonstrations of alternative approaches to presenting results
Publisher: Academic Press
ISBN: 0123869048
Category : Mathematics
Languages : en
Pages : 489
Book Description
The first edition of Geometric Morphometrics for Biologists has been the primary resource for teaching modern geometric methods of shape analysis to biologists who have a stronger background in biology than in multivariate statistics and matrix algebra. These geometric methods are appealing to biologists who approach the study of shape from a variety of perspectives, from clinical to evolutionary, because they incorporate the geometry of organisms throughout the data analysis. The second edition of this book retains the emphasis on accessible explanations, and the copious illustrations and examples of the first, updating the treatment of both theory and practice. The second edition represents the current state-of-the-art and adds new examples and summarizes recent literature, as well as provides an overview of new software and step-by-step guidance through details of carrying out the analyses. - Contains updated coverage of methods, especially for sampling complex curves and 3D forms and a new chapter on applications of geometric morphometrics to forensics - Offers a reorganization of chapters to streamline learning basic concepts - Presents detailed instructions for conducting analyses with freely available, easy to use software - Provides numerous illustrations, including graphical presentations of important theoretical concepts and demonstrations of alternative approaches to presenting results
Drawing Geometry
Author:
Publisher: Floris Books - Floris Books
ISBN: 9780863156083
Category : Architecture
Languages : en
Pages : 86
Book Description
Geometry is both elegantly simple and infinitely profound. Many professionals find they need to be able to draw geometric shapes accurately, and this unique book shows them how. It provides step-by-step instructions for constructing two-dimensional geometric shapes, which can be readily followed by a beginner, or used as an invaluable source book by students and professionals.
Publisher: Floris Books - Floris Books
ISBN: 9780863156083
Category : Architecture
Languages : en
Pages : 86
Book Description
Geometry is both elegantly simple and infinitely profound. Many professionals find they need to be able to draw geometric shapes accurately, and this unique book shows them how. It provides step-by-step instructions for constructing two-dimensional geometric shapes, which can be readily followed by a beginner, or used as an invaluable source book by students and professionals.
A Primer on Mapping Class Groups
Author: Benson Farb
Publisher: Princeton University Press
ISBN: 0691147949
Category : Mathematics
Languages : en
Pages : 490
Book Description
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Publisher: Princeton University Press
ISBN: 0691147949
Category : Mathematics
Languages : en
Pages : 490
Book Description
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Introduction to Algebraic Geometry
Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
3D Math Primer for Graphics and Game Development, 2nd Edition
Author: Fletcher Dunn
Publisher: CRC Press
ISBN: 1568817231
Category : Computers
Languages : en
Pages : 848
Book Description
This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.
Publisher: CRC Press
ISBN: 1568817231
Category : Computers
Languages : en
Pages : 848
Book Description
This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.
A Primer of Infinitesimal Analysis
Author: John L. Bell
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Ruler and Compass
Author: Andrew Sutton
Publisher: Bloomsbury Publishing USA
ISBN: 0802717764
Category : Mathematics
Languages : en
Pages : 65
Book Description
Presents an introduction to the origins and principles of geometry, describing geometric constructions that can be achieved through the use of rulers and compasses.
Publisher: Bloomsbury Publishing USA
ISBN: 0802717764
Category : Mathematics
Languages : en
Pages : 65
Book Description
Presents an introduction to the origins and principles of geometry, describing geometric constructions that can be achieved through the use of rulers and compasses.
Geometric Constructions
Author: George E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461206294
Category : Mathematics
Languages : en
Pages : 210
Book Description
Geometric constructions have been a popular part of mathematics throughout history. The first chapter here is informal and starts from scratch, introducing all the geometric constructions from high school that have been forgotten or were never learned. The second chapter formalises Plato's game, and examines problems from antiquity such as the impossibility of trisecting an arbitrary angle. After that, variations on Plato's theme are explored: using only a ruler, a compass, toothpicks, a ruler and dividers, a marked rule, or a tomahawk, ending in a chapter on geometric constructions by paperfolding. The author writes in a charming style and nicely intersperses history and philosophy within the mathematics, teaching a little geometry and a little algebra along the way. This is as much an algebra book as it is a geometry book, yet since all the algebra and geometry needed is developed within the text, very little mathematical background is required. This text has been class tested for several semesters with a master's level class for secondary teachers.
Publisher: Springer Science & Business Media
ISBN: 1461206294
Category : Mathematics
Languages : en
Pages : 210
Book Description
Geometric constructions have been a popular part of mathematics throughout history. The first chapter here is informal and starts from scratch, introducing all the geometric constructions from high school that have been forgotten or were never learned. The second chapter formalises Plato's game, and examines problems from antiquity such as the impossibility of trisecting an arbitrary angle. After that, variations on Plato's theme are explored: using only a ruler, a compass, toothpicks, a ruler and dividers, a marked rule, or a tomahawk, ending in a chapter on geometric constructions by paperfolding. The author writes in a charming style and nicely intersperses history and philosophy within the mathematics, teaching a little geometry and a little algebra along the way. This is as much an algebra book as it is a geometry book, yet since all the algebra and geometry needed is developed within the text, very little mathematical background is required. This text has been class tested for several semesters with a master's level class for secondary teachers.