A Practical Guide to Data Mining for Business and Industry

A Practical Guide to Data Mining for Business and Industry PDF Author: Andrea Ahlemeyer-Stubbe
Publisher: John Wiley & Sons
ISBN: 1118763378
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

A Practical Guide to Data Mining for Business and Industry

A Practical Guide to Data Mining for Business and Industry PDF Author: Andrea Ahlemeyer-Stubbe
Publisher: John Wiley & Sons
ISBN: 1118763378
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

Data Mining and Business Intelligence

Data Mining and Business Intelligence PDF Author: Stephan Kudyba
Publisher: IGI Global
ISBN: 9781930708037
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
Annotation Provides an overview of data mining technology and how it is applied in a business environment. Material is not written in a technical style, but rather addresses the applied methodology behind implementing data mining techniques in the corporate environment. Explains how the technology evolved, overviews the methodologies that comprise the data mining spectrum, and looks at everyday business applications for data mining, in areas such as marketing and advertising promotions and pricing policies using econometric-based modeling, and using the Internet to help improve an organization's performance. Kudyba is an economic consultant. Hoptroff is an independent consultant with experience in data mining software. Annotation c. Book News, Inc., Portland, OR (booknews.com).

Data Mining for Business Analytics

Data Mining for Business Analytics PDF Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Business Intelligence in Plain Language

Business Intelligence in Plain Language PDF Author: Jeremy M. Kolb
Publisher: CreateSpace
ISBN: 9781479324187
Category : Business intelligence
Languages : en
Pages : 66

Get Book Here

Book Description
One day a man walked into Asgard Inc. and changed the company forever. Unlike anyone who came before, he remembered and understood data as naturally as a fish swims in water. The CEO was shocked at how well the man knew the company. He started posing questions to this man. Who are my best customers? Why is this product struggling? Where is my greatest growth happening? The man answered these and more. Using his understanding of data, he identified key new markets, he discovered the best places to invest capital, and he even predicted the future. Overnight Asgard Inc. changed. Where before the CEO relied on limited information and gut feelings, now true knowledge guided his actions. The CEO took the man's hand in gratitude and asked, "Who are you?" and he replied, "I am Business Intelligence." Business Intelligence(BI) is shrouded in mystery for a lot of us but it doesn't need to stay that way. Business Intelligence in Plain Language is a systematic exploration of this complicated tool. I'll teach you about what it does, how it works, and most importantly how you can benefit from it. In this book you will learn about: Business Intelligence Data Mining Data Warehousing Data Discovery Big Data Outlier Detection Pattern Recognition Predictive Modeling Data Transformation and much more This book is your practical guide to understanding and implementing Business Intelligence.

Practical Data Mining

Practical Data Mining PDF Author: Jr., Monte F. Hancock
Publisher: CRC Press
ISBN: 1439868379
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
Used by corporations, industry, and government to inform and fuel everything from focused advertising to homeland security, data mining can be a very useful tool across a wide range of applications. Unfortunately, most books on the subject are designed for the computer scientist and statistical illuminati and leave the reader largely adrift in tech

Java Data Mining

Java Data Mining PDF Author: Mark F. Hornick
Publisher: Morgan Kaufmann
ISBN: 9780123704528
Category : Computers
Languages : en
Pages : 520

Get Book Here

Book Description
Java Data Mining (JDM) is a standard now implemented in core DBMSs and data mining/analysis software. Ideal for both the beginner and expert, this text is an essential guide to understanding and using the JDM standard interface.

Data Science for Business

Data Science for Business PDF Author: Foster Provost
Publisher: "O'Reilly Media, Inc."
ISBN: 144937428X
Category : Computers
Languages : en
Pages : 506

Get Book Here

Book Description
Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Monetizing Data

Monetizing Data PDF Author: Andrea Ahlemeyer-Stubbe
Publisher: John Wiley & Sons
ISBN: 1119125146
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
Practical guide for deriving insight and commercial gain from data Monetising Data offers a practical guide for anyone working with commercial data but lacking deep knowledge of statistics or data mining. The authors — noted experts in the field — show how to generate extra benefit from data already collected and how to use it to solve business problems. In accessible terms, the book details ways to extract data to enhance business practices and offers information on important topics such as data handling and management, statistical methods, graphics and business issues. The text presents a wide range of illustrative case studies and examples to demonstrate how to adapt the ideas towards monetisation, no matter the size or type of organisation. The authors explain on a general level how data is cleaned and matched between data sets and how we learn from data analytics to address vital business issues. The book clearly shows how to analyse and organise data to identify people and follow and interact with them through the customer lifecycle. Monetising Data is an important resource: Focuses on different business scenarios and opportunities to turn data into value Gives an overview on how to store, manage and maintain data Presents mechanisms for using knowledge from data analytics to improve the business and increase profits Includes practical suggestions for identifying business issues from the data Written for everyone engaged in improving the performance of a company, including managers and students, Monetising Data is an essential guide for understanding and using data to enrich business practice.

Driving Innovation and Productivity Through Sustainable Automation

Driving Innovation and Productivity Through Sustainable Automation PDF Author: Amini, Ardavan
Publisher: IGI Global
ISBN: 1799858804
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book Here

Book Description
Industry 4.0 and the subsequent automation and digitalization of processes, including the tighter integration of machine-machine and human-machine intercommunication and collaboration, is adding additional complexity to future systems design and the capability to simulate, optimize, and adapt. Current solutions lack the ability to capture knowledge, techniques, and methods to create a sustainable and intelligent nerve system for enterprise systems. With the ability to innovate new designs and solutions, as well as automate processes and decision-making capabilities with heterogenous and holistic views of current and future challenges, there can be an increase in productivity and efficiency through sustainable automation. Therefore, better understandings of the underpinning knowledge and expertise of sustainable automation that can create a sustainable cycle that drives optimal automation and innovation in the field is needed Driving Innovation and Productivity Through Sustainable Automation enhances the understanding and the knowledge for the new ecosystems emerging in the Fourth Industrial Revolution. The chapters provide the knowledge and understanding of current challenges and new capabilities and solutions having been researched, developed, and applied within the industry to drive sustainable automation for innovation and productivity. This book is ideally intended for managers, executives, IT specialists, practitioners, stakeholders, researchers, academicians, and students who are interested in the current research on sustainable automation.

Business Intelligence

Business Intelligence PDF Author: Carlo Vercellis
Publisher: John Wiley & Sons
ISBN: 1119965470
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.