Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722905439
Category :
Languages : en
Pages : 170
Book Description
Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass. Stanaway, S. K. and Cantwell, B. J. and Spalart, Philippe R. Ames Research Center COMPUTATIONAL FLUID DYNAMICS; NAVIER-STOKES EQUATION...
A Numerical Study of Viscous Vortex Rings Using a Spectral Method
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722905439
Category :
Languages : en
Pages : 170
Book Description
Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass. Stanaway, S. K. and Cantwell, B. J. and Spalart, Philippe R. Ames Research Center COMPUTATIONAL FLUID DYNAMICS; NAVIER-STOKES EQUATION...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722905439
Category :
Languages : en
Pages : 170
Book Description
Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass. Stanaway, S. K. and Cantwell, B. J. and Spalart, Philippe R. Ames Research Center COMPUTATIONAL FLUID DYNAMICS; NAVIER-STOKES EQUATION...
A Numerical Study of Viscous Vortex Rings Using a Spectral Method
Author: Sharon K. Stanaway
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 348
Book Description
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 348
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 456
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 456
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Vortex Flows and Related Numerical Methods
Author: J.T. Beale
Publisher: Springer Science & Business Media
ISBN: 9401581371
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 9401581371
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.
Studying Turbulence Using Numerical Simulation Databases - II.
Author: Center for Turbulence Research (U.S.)
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 336
Book Description
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 336
Book Description
Aerodynamics And Aeroacoustics - Proceedings Of The Symposium
Author: Fung K Y
Publisher: World Scientific
ISBN: 9814551570
Category :
Languages : en
Pages : 384
Book Description
The aim of the symposium was to gather fellow researchers, colleagues and friends of Professor William R Sears, a member of the National Academy of Science and the Academy of Engineering, on the occasion of his 80th birthday. Professor Sears is a leader in Aerospace Science and Aerodynamics research and the symposium was held in honour of his work in these areas.The symposium focussed on four areas in aeronautical science in which Professor Sears has made major contributions. These are wing design, unsteady aerodynamics and separation, aeroacoustics and self-correcting wind tunnels.
Publisher: World Scientific
ISBN: 9814551570
Category :
Languages : en
Pages : 384
Book Description
The aim of the symposium was to gather fellow researchers, colleagues and friends of Professor William R Sears, a member of the National Academy of Science and the Academy of Engineering, on the occasion of his 80th birthday. Professor Sears is a leader in Aerospace Science and Aerodynamics research and the symposium was held in honour of his work in these areas.The symposium focussed on four areas in aeronautical science in which Professor Sears has made major contributions. These are wing design, unsteady aerodynamics and separation, aeroacoustics and self-correcting wind tunnels.
Monthly Catalogue, United States Public Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1384
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1384
Book Description
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1112
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1112
Book Description
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-spline Spectral Method
Author: Patrick Loulou
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 196
Book Description
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 196
Book Description
Advances In Engineering Mechanics--reflections And Outlooks: In Honor Of Theodore Y-t Wu
Author: Daniel T Valentine
Publisher: World Scientific
ISBN: 981448105X
Category : Science
Languages : en
Pages : 747
Book Description
This volume presents more than 40 original papers on recent advances in several topics in engineering mechanics presented at The Theodore Y-T Wu Symposium on Engineering Mechanics: A celebration of Professor Wu's scientific contributions for his 80th birthday. The distinguished contributors include several members of the National Academy of Engineers and the topics cover nonlinear water waves, swimming and flying in nature, biomechanics, data analysis methodology, and propulsion hydrodynamics.The papers honor the significant accomplishments of Professor Wu in Engineering Science at Caltech, particularly in the areas of nonlinear waves, hydrodynamics, biomechanics and wave-structure interaction. They review the present state of the art of engineering mechanics, and chart the future of the field from the viewpoint of civil engineering, biomechanics, geophysics, mechanical engineering, naval architecture, ocean, and offshore engineering. The primary purpose of this book is to provide guidance and inspiration for those interested in continuing to advance engineering mechanics into the 21st century. To quote Professor Wu: ”The value of a book publication lies in disseminating new knowledge attained with effort and dedication from all those who participate, and in having the useful results within ready reach of students and researchers actively working in the field.”
Publisher: World Scientific
ISBN: 981448105X
Category : Science
Languages : en
Pages : 747
Book Description
This volume presents more than 40 original papers on recent advances in several topics in engineering mechanics presented at The Theodore Y-T Wu Symposium on Engineering Mechanics: A celebration of Professor Wu's scientific contributions for his 80th birthday. The distinguished contributors include several members of the National Academy of Engineers and the topics cover nonlinear water waves, swimming and flying in nature, biomechanics, data analysis methodology, and propulsion hydrodynamics.The papers honor the significant accomplishments of Professor Wu in Engineering Science at Caltech, particularly in the areas of nonlinear waves, hydrodynamics, biomechanics and wave-structure interaction. They review the present state of the art of engineering mechanics, and chart the future of the field from the viewpoint of civil engineering, biomechanics, geophysics, mechanical engineering, naval architecture, ocean, and offshore engineering. The primary purpose of this book is to provide guidance and inspiration for those interested in continuing to advance engineering mechanics into the 21st century. To quote Professor Wu: ”The value of a book publication lies in disseminating new knowledge attained with effort and dedication from all those who participate, and in having the useful results within ready reach of students and researchers actively working in the field.”