A Numerical Study of Reactive Flows in Pulse Detonation Engines

A Numerical Study of Reactive Flows in Pulse Detonation Engines PDF Author: Chiping Li
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

A Numerical Study of Reactive Flows in Pulse Detonation Engines

A Numerical Study of Reactive Flows in Pulse Detonation Engines PDF Author: Chiping Li
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Study of Chemically Reacting Viscous Flow Relevant to Pulsed Detonation Engines

Numerical Study of Chemically Reacting Viscous Flow Relevant to Pulsed Detonation Engines PDF Author: Tae-Hyeong Yi
Publisher:
ISBN: 9780542449628
Category : Aerospace engineering
Languages : en
Pages :

Get Book Here

Book Description
A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

Detonation Control for Propulsion

Detonation Control for Propulsion PDF Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Коммунист: календарь-справоčник 1978

Коммунист: календарь-справоčник 1978 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 315

Get Book Here

Book Description


Numerical Simulation of Reactive Flow

Numerical Simulation of Reactive Flow PDF Author: Elaine S. Oran
Publisher: Cambridge University Press
ISBN: 9780521022361
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and in stars. Because of a similarity in their descriptive equations, procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This new edition of a highly successful book presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows. It takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive-flow problems that has occurred since the previous edition was published more than fifteen years ago. An indispensable guide on how to construct, use, and interpret numerical simulations of reactive flows, this book will be welcomed by advanced undergraduate and graduate students, and a wide range of researchers and practitioners in engineering, physics, and chemistry.

Modeling and Simulation of Reactive Flows

Modeling and Simulation of Reactive Flows PDF Author: A.L. De Bortoli
Publisher: Elsevier
ISBN: 0128029919
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and various techniques—including flamelet, ILDM, and Redim—for jet flames and plumes, with solutions for both. In addition, the book includes techniques to accelerate the convergence of numerical simulation, and a discussion on the analysis of uncertainties with numerical results, making this a useful reference for anyone who is interested in both combustion in free flow and in porous media. Helps readers learn how to apply applications of numerical methods to simulate geochemical kinetics Presents methods on how to transform the transport equations in several coordinate systems Includes discussions of the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms, including the most common methods used in practical situations Offers a distinctive approach that combines diffusion flames and geochemical flow problems

Interface Problems and Methods in Biological and Physical Flows

Interface Problems and Methods in Biological and Physical Flows PDF Author: Boo Cheong Khoo
Publisher: World Scientific
ISBN: 9812837841
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
This volume showcases lecture notes collected from tutorials presented at the Workshop on Moving Interface Problems and Applications in Fluid Dynamics that was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences, National University of Singapore. As part of the program, these tutorials were conducted by specialists within their respective areas such as Robert Dillon, Zhilin Li, John Lowengrub, Frank Lu and Gretar Tryggvason.The topics in the program encompass modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications like biological treatments with experimental verification, multi-medium flow or multiphase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas.This volume stand to benefit graduate students and researchers keen in the field of interfacial flows for application to physical and biological systems. Even beginners will find this volume a very useful starting point with many relevant references applicable.

AIAA Journal

AIAA Journal PDF Author: American Institute of Aeronautics and Astronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 990

Get Book Here

Book Description


Numerical Simulation of Pulse Detonation Engine Phenomena

Numerical Simulation of Pulse Detonation Engine Phenomena PDF Author: Xing He
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Simulation of Pulse Detonation Phenomena in a Parallel Environment

Numerical Simulation of Pulse Detonation Phenomena in a Parallel Environment PDF Author: Prashaanth Ravindran
Publisher:
ISBN: 9780542467868
Category : Aerospace engineering
Languages : en
Pages :

Get Book Here

Book Description
The objective of this work was to develop a parallel algorithm that would be used in the simulation of the detonation process in the chamber of a pulse detonation engine. The emphasis is laid on reducing computation time while maintaining the accuracy of the solution and subsequently developing a numerical solution to be in agreement with real-world physical characteristics of a detonation wave initiation, build-up and progression. The flow is assumed to be unsteady, inviscid and non heat conducting. To adhere to real time effects, the flow equations are coupled with finite rate chemistry and the vibrational energy equation are based on a two-temperature model, to account for possible vibrational non-equilibrium. Finite Volume formulation is employed to ensure conservation and to allow proper handling of discontinuities. Runge-Kutta integration scheme has been utilized to obtain a time-accurate solution, with Roes flux difference splitting scheme applied to cell face fluxes. For higher-order spatial accuracy, MUSCL technique is employed. Equation stiffness has been taken care of by observing point implicit treatment of the source terms and detonation is initiated with the application of a localized hot-spot. The parallel algorithm has been developed using Message Passing Interface standard developed by the Argonne National Laboratory for the purposes of solving equations in a distributed environment. A proto-cluster of Beowulf type consisting of 8-nodes has been assembled and made operational, and an algorithm which performs space-time calculations simultaneously on the nodes has been successfully developed. A two-step global model for Hydrogen-Air mixture has been selected for validating the parallel algorithm with existing results, to establish veracity and accuracy while reducing computation time to almost a fourth. Excellent agreement has been found on comparison of the results with the same code when solved in a single processor.