Author: Milan Jirasek
Publisher: John Wiley & Sons
ISBN: 9780471987161
Category : Technology & Engineering
Languages : en
Pages : 770
Book Description
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
Inelastic Analysis of Structures
Author: Milan Jirasek
Publisher: John Wiley & Sons
ISBN: 9780471987161
Category : Technology & Engineering
Languages : en
Pages : 770
Book Description
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
Publisher: John Wiley & Sons
ISBN: 9780471987161
Category : Technology & Engineering
Languages : en
Pages : 770
Book Description
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
Inelastic Analysis of Structures under Variable Loads
Author: Dieter Weichert
Publisher: Springer Science & Business Media
ISBN: 9401094217
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.
Publisher: Springer Science & Business Media
ISBN: 9401094217
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.
Inelastic Analysis of Solids and Structures
Author: M. Kojic
Publisher: Springer Science & Business Media
ISBN: 3540265074
Category : Science
Languages : en
Pages : 419
Book Description
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Publisher: Springer Science & Business Media
ISBN: 3540265074
Category : Science
Languages : en
Pages : 419
Book Description
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Inelastic Behaviour of Structures under Variable Loads
Author: Zenon Mróz
Publisher: Springer Science & Business Media
ISBN: 9401102716
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
This collection of papers is a state of the art presentation of theories and methods related to the problem of the behaviour of mechanical structures under variable loads beyond their elastic limit In particular, the problems of shakedown, ratchetting, transient and asymptotic cyclic states are addressed. The volume is composed of four chapters devoted to material modelling for cyclic loading conditions; general theory of accommodated states of structures; effects of changes of the geometry on the inelastic structural response; and numerical techniques with applications to particular engineering problems. It was aimed to provide a unified approach in order to understand both inelastic material and structural response under variable loading conditions. The attempt to extend the classical shakedown theory of Melan and Koiter to geometrically non-linear problems is presented in several papers. The industrial application of cyclic plasticity to the analysis and the design of pressure bellows, compensators, turbine disks, or flange connections under thermal and pressure cycles illustrates the great potential of the numerical techniques developed for this purpose using mostly min-max approaches. The treatment of railway problems and the analysis and optimisation of pavements are further examples of important areas of applications. Emphasis was laid on approaches that take into account the fact that loading histories are often not precisely known Therefore, the center of interest lies in other than step by step calculation methods.
Publisher: Springer Science & Business Media
ISBN: 9401102716
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
This collection of papers is a state of the art presentation of theories and methods related to the problem of the behaviour of mechanical structures under variable loads beyond their elastic limit In particular, the problems of shakedown, ratchetting, transient and asymptotic cyclic states are addressed. The volume is composed of four chapters devoted to material modelling for cyclic loading conditions; general theory of accommodated states of structures; effects of changes of the geometry on the inelastic structural response; and numerical techniques with applications to particular engineering problems. It was aimed to provide a unified approach in order to understand both inelastic material and structural response under variable loading conditions. The attempt to extend the classical shakedown theory of Melan and Koiter to geometrically non-linear problems is presented in several papers. The industrial application of cyclic plasticity to the analysis and the design of pressure bellows, compensators, turbine disks, or flange connections under thermal and pressure cycles illustrates the great potential of the numerical techniques developed for this purpose using mostly min-max approaches. The treatment of railway problems and the analysis and optimisation of pavements are further examples of important areas of applications. Emphasis was laid on approaches that take into account the fact that loading histories are often not precisely known Therefore, the center of interest lies in other than step by step calculation methods.
Seismic Analysis of Safety-related Nuclear Structures, and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures
Author: American Society of Civil Engineers
Publisher: Amer Society of Civil Engineers
ISBN: 9780872625822
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
Publisher: Amer Society of Civil Engineers
ISBN: 9780872625822
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
Seismic Analysis of Structures
Author: T. K. Datta
Publisher: John Wiley & Sons
ISBN: 047082462X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic
Publisher: John Wiley & Sons
ISBN: 047082462X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic
Analysis and Design of Elastic Beams
Author: Walter D. Pilkey
Publisher: John Wiley & Sons
ISBN: 0471423211
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
State-of-the-art coverage of modern computational methods for the analysis and design of beams Analysis and Design of Elastic Beams presents computer models and applications related to thin-walled beams such as those used in mechanical and aerospace designs, where thin, lightweight structures with high strength are needed. This book will enable readers to compute the cross-sectional properties of individual beams with arbitrary cross-sectional shapes, to apply a general-purpose computer analysis of a complete structure to determine the forces and moments in the individual members, and to use a unified approach for calculating the normal and shear stresses, as well as deflections, for those members' cross sections. In addition, this book augments a solid foundation in the basic structural design theory of beams by: * Providing coverage of thin-wall structure analysis and optimization techniques * Applying computer numerical methods to classical design methods * Developing computational solutions for cross-sectional properties and stresses using finite element analyses Including access to an associated Web site with software for the analysis and design of any cross-sectional shape, Analysis and Design of Elastic Beams: Computational Methods is an essential reference for mechanical, aerospace, and civil engineers and designers working in the automotive, ship, and aerospace industries in product and process design, machine design, structural design, and design optimization, as well as students and researchers in these areas.
Publisher: John Wiley & Sons
ISBN: 0471423211
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
State-of-the-art coverage of modern computational methods for the analysis and design of beams Analysis and Design of Elastic Beams presents computer models and applications related to thin-walled beams such as those used in mechanical and aerospace designs, where thin, lightweight structures with high strength are needed. This book will enable readers to compute the cross-sectional properties of individual beams with arbitrary cross-sectional shapes, to apply a general-purpose computer analysis of a complete structure to determine the forces and moments in the individual members, and to use a unified approach for calculating the normal and shear stresses, as well as deflections, for those members' cross sections. In addition, this book augments a solid foundation in the basic structural design theory of beams by: * Providing coverage of thin-wall structure analysis and optimization techniques * Applying computer numerical methods to classical design methods * Developing computational solutions for cross-sectional properties and stresses using finite element analyses Including access to an associated Web site with software for the analysis and design of any cross-sectional shape, Analysis and Design of Elastic Beams: Computational Methods is an essential reference for mechanical, aerospace, and civil engineers and designers working in the automotive, ship, and aerospace industries in product and process design, machine design, structural design, and design optimization, as well as students and researchers in these areas.
Modeling of Inelastic Behavior of RC Structures Under Seismic Loads
Author: P. Benson Shing
Publisher: ASCE Publications
ISBN: 9780784474969
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.
Publisher: ASCE Publications
ISBN: 9780784474969
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.
Matrix Structural Analysis
Author: William McGuire
Publisher: Wiley
ISBN: 9780471129189
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Entire book and illustrative examples have been edited extensively, and several chapters repositioned. * Imperial units are used instead of SI units in many of the examples and problems, particularly those of a nonlinear nature that have strong implications for design, since the SI system has not been fully assimilated in practice.
Publisher: Wiley
ISBN: 9780471129189
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Entire book and illustrative examples have been edited extensively, and several chapters repositioned. * Imperial units are used instead of SI units in many of the examples and problems, particularly those of a nonlinear nature that have strong implications for design, since the SI system has not been fully assimilated in practice.
Plastic Analysis and Design of Steel Structures
Author: M. Bill Wong
Publisher: Butterworth-Heinemann
ISBN: 0080941850
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
The plastic analysis method has been used extensively by engineers for designing steel structures. Simpler structures can be analyzed using the basic virtual work formulation, but more complex frames are evaluated with specialist computer software. This new book sets out a method for carrying out plastic analysis of complex structures without the need for specialist tools.The book provides an introduction to the use of linear programming techniques for plastic analysis. This powerful and advanced method for plastic analysis is important in an automated computational environment, in particular for non-linear structural analysis.A detailed comparison between the design codes for the United States and Australia and the emerging European Eurocodes enables practising engineers to understand the issues involved in plastic design procedures and the limitations imposed by this design method. - Covers latest research in plastic analysis and analytical tools - Introduces new successive approximation method for calculating collapse loads - Programming guide for using spreadsheet tools for plastic analysis
Publisher: Butterworth-Heinemann
ISBN: 0080941850
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
The plastic analysis method has been used extensively by engineers for designing steel structures. Simpler structures can be analyzed using the basic virtual work formulation, but more complex frames are evaluated with specialist computer software. This new book sets out a method for carrying out plastic analysis of complex structures without the need for specialist tools.The book provides an introduction to the use of linear programming techniques for plastic analysis. This powerful and advanced method for plastic analysis is important in an automated computational environment, in particular for non-linear structural analysis.A detailed comparison between the design codes for the United States and Australia and the emerging European Eurocodes enables practising engineers to understand the issues involved in plastic design procedures and the limitations imposed by this design method. - Covers latest research in plastic analysis and analytical tools - Introduces new successive approximation method for calculating collapse loads - Programming guide for using spreadsheet tools for plastic analysis