Principal Manifolds for Data Visualization and Dimension Reduction

Principal Manifolds for Data Visualization and Dimension Reduction PDF Author: Alexander N. Gorban
Publisher: Springer Science & Business Media
ISBN: 3540737502
Category : Technology & Engineering
Languages : en
Pages : 361

Get Book Here

Book Description
The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.

Principal Manifolds for Data Visualization and Dimension Reduction

Principal Manifolds for Data Visualization and Dimension Reduction PDF Author: Alexander N. Gorban
Publisher: Springer Science & Business Media
ISBN: 3540737502
Category : Technology & Engineering
Languages : en
Pages : 361

Get Book Here

Book Description
The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.

Principal Component Neural Networks

Principal Component Neural Networks PDF Author: K. I. Diamantaras
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.

Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Numerical Methods for Unconstrained Optimization and Nonlinear Equations PDF Author: J. E. Dennis, Jr.
Publisher: SIAM
ISBN: 9781611971200
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.

Independent Component Analysis

Independent Component Analysis PDF Author: Aapo Hyvärinen
Publisher: John Wiley & Sons
ISBN: 0471464198
Category : Science
Languages : en
Pages : 505

Get Book Here

Book Description
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Progresses in Artificial Intelligence and Neural Systems

Progresses in Artificial Intelligence and Neural Systems PDF Author: Anna Esposito
Publisher: Springer Nature
ISBN: 981155093X
Category : Technology & Engineering
Languages : en
Pages : 588

Get Book Here

Book Description
This book provides an overview of the current advances in artificial intelligence and neural nets. Artificial intelligence (AI) methods have shown great capabilities in modelling, prediction and recognition tasks supporting human–machine interaction. At the same time, the issue of emotion has gained increasing attention due to its relevance in achieving human-like interaction with machines. The real challenge is taking advantage of the emotional characterization of humans’ interactions to make computers interfacing with them emotionally and socially credible. The book assesses how and to what extent current sophisticated computational intelligence tools might support the multidisciplinary research on the characterization of appropriate system reactions to human emotions and expressions in interactive scenarios. Discussing the latest recent research trends, innovative approaches and future challenges in AI from interdisciplinary perspectives, it is a valuable resource for researchers and practitioners in academia and industry.

Neural Computing - An Introduction

Neural Computing - An Introduction PDF Author: R Beale
Publisher: CRC Press
ISBN: 9781420050431
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Neural computing is one of the most interesting and rapidly growing areas of research, attracting researchers from a wide variety of scientific disciplines. Starting from the basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their capabilities, advantages, and disadvantages. The book also highlights the applications of each approach and explores the relationships among models developed and between the brain and its function. A comprehensive and comprehensible introduction to the subject, this book is ideal for undergraduates in computer science, physicists, communications engineers, workers involved in artificial intelligence, biologists, psychologists, and physiologists.

Advances in Intelligent Systems

Advances in Intelligent Systems PDF Author: Gary Lee
Publisher: Springer Science & Business Media
ISBN: 3642278698
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
2012 International Conference on Environment Science and 2012 International Conference on Computer Science (ICES 2012/ICCS 2012) will be held in Australia, Melbourne, 15‐16 March, 2012.Volume 2 contains some topics in intelligent system. There are 51 papers were selected as the regular paper in this volume. It contains the latest developments and reflects the experience of many researchers working in different environments (universities, research centers or even industries), publishing new theories and solving new technological problems. The purpose of volume 2 is interconnection of diverse scientific fields, the cultivation of every possible scientific collaboration, the exchange of views and the promotion of new research targets as well as the further dissemination, the diffusion of intelligent system, including but not limited to Intelligent System, Neural networks, Machine Learning, Multimedia System and Applications, Speech Processing, Image & video Signal Processing and Computer‐Aided Network Design the dispersion. We are sure that the efforts of the authors as well as the reviewers to provide high level contributions will be appreciated by the relevant scientific community. We are convinced that presented volume will be a source of knowledge and inspiration for all academic members, researchers and practitioners working in a field of the topic covered by the book.

Generalized Principal Component Analysis

Generalized Principal Component Analysis PDF Author: René Vidal
Publisher: Springer
ISBN: 0387878114
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

Principal Component Analysis

Principal Component Analysis PDF Author: I.T. Jolliffe
Publisher: Springer Science & Business Media
ISBN: 1475719043
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.

Advances in Neural Information Processing Systems 11

Advances in Neural Information Processing Systems 11 PDF Author: Michael S. Kearns
Publisher: MIT Press
ISBN: 9780262112451
Category : Computers
Languages : en
Pages : 1122

Get Book Here

Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.