Author: Jens Kappei
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832530304
Category : Mathematics
Languages : en
Pages : 174
Book Description
Over the last ten years, adaptive wavelet methods have turned out to be a powerful tool in the numerical treatment of operator equations given on a bounded domain or closed manifold. In this work, we consider semi-nonlinear operator equations, including an elliptic linear operator as well as a nonlinear monotone one. Since the classical approach to construct a wavelet Riesz basis for the solution space is still afflicted with some notable problems, we use the weaker concept of wavelet frames to design an adaptive algorithm for the numerical solution of problems of this type. Choosing an appropriate overlapping decomposition of the given domain, a suitable frame system can be constructed easily. Applying it to the given continuous problem yields a discrete, bi-infinite nonlinear system of equations, which is shown to be solvable by a damped Richardson iteration method. We then successively introduce all building blocks for the numerical implementation of the iteration method. Here, we concentrate on the evaluation of the discrete nonlinearity, where we show that the previously developed auxiliary of tree-structured index sets can be generalized to the wavelet frame setting in a proper way. This allows an effective numerical treatment of the nonlinearity by so-called aggregated trees. Choosing the error tolerances appropriately, we show that our adaptive scheme is asymptotically optimal with respect to aggregated tree-structured index sets, i.e., it realizes the same convergence rate as the sequence of best N-term frame approximations of the solution respecting aggregated trees. Moreover, under the assumption of a sufficiently precise numerical quadrature method, the computational cost of our algorithm stays the same order as the number of wavelets used by it. The theoretical results are widely confirmed by one- and two-dimensional test problems over non-trivial bounded domains.
Adaptive wavelet frame methods for nonlinear elliptic problems
Author: Jens Kappei
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832530304
Category : Mathematics
Languages : en
Pages : 174
Book Description
Over the last ten years, adaptive wavelet methods have turned out to be a powerful tool in the numerical treatment of operator equations given on a bounded domain or closed manifold. In this work, we consider semi-nonlinear operator equations, including an elliptic linear operator as well as a nonlinear monotone one. Since the classical approach to construct a wavelet Riesz basis for the solution space is still afflicted with some notable problems, we use the weaker concept of wavelet frames to design an adaptive algorithm for the numerical solution of problems of this type. Choosing an appropriate overlapping decomposition of the given domain, a suitable frame system can be constructed easily. Applying it to the given continuous problem yields a discrete, bi-infinite nonlinear system of equations, which is shown to be solvable by a damped Richardson iteration method. We then successively introduce all building blocks for the numerical implementation of the iteration method. Here, we concentrate on the evaluation of the discrete nonlinearity, where we show that the previously developed auxiliary of tree-structured index sets can be generalized to the wavelet frame setting in a proper way. This allows an effective numerical treatment of the nonlinearity by so-called aggregated trees. Choosing the error tolerances appropriately, we show that our adaptive scheme is asymptotically optimal with respect to aggregated tree-structured index sets, i.e., it realizes the same convergence rate as the sequence of best N-term frame approximations of the solution respecting aggregated trees. Moreover, under the assumption of a sufficiently precise numerical quadrature method, the computational cost of our algorithm stays the same order as the number of wavelets used by it. The theoretical results are widely confirmed by one- and two-dimensional test problems over non-trivial bounded domains.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832530304
Category : Mathematics
Languages : en
Pages : 174
Book Description
Over the last ten years, adaptive wavelet methods have turned out to be a powerful tool in the numerical treatment of operator equations given on a bounded domain or closed manifold. In this work, we consider semi-nonlinear operator equations, including an elliptic linear operator as well as a nonlinear monotone one. Since the classical approach to construct a wavelet Riesz basis for the solution space is still afflicted with some notable problems, we use the weaker concept of wavelet frames to design an adaptive algorithm for the numerical solution of problems of this type. Choosing an appropriate overlapping decomposition of the given domain, a suitable frame system can be constructed easily. Applying it to the given continuous problem yields a discrete, bi-infinite nonlinear system of equations, which is shown to be solvable by a damped Richardson iteration method. We then successively introduce all building blocks for the numerical implementation of the iteration method. Here, we concentrate on the evaluation of the discrete nonlinearity, where we show that the previously developed auxiliary of tree-structured index sets can be generalized to the wavelet frame setting in a proper way. This allows an effective numerical treatment of the nonlinearity by so-called aggregated trees. Choosing the error tolerances appropriately, we show that our adaptive scheme is asymptotically optimal with respect to aggregated tree-structured index sets, i.e., it realizes the same convergence rate as the sequence of best N-term frame approximations of the solution respecting aggregated trees. Moreover, under the assumption of a sufficiently precise numerical quadrature method, the computational cost of our algorithm stays the same order as the number of wavelets used by it. The theoretical results are widely confirmed by one- and two-dimensional test problems over non-trivial bounded domains.
Numerical Methods for Nonlinear Elliptic Differential Equations
Author: Klaus Böhmer
Publisher: Oxford University Press
ISBN: 0199577048
Category : Computers
Languages : en
Pages : 775
Book Description
Boehmer systmatically handles the different numerical methods for nonlinear elliptic problems.
Publisher: Oxford University Press
ISBN: 0199577048
Category : Computers
Languages : en
Pages : 775
Book Description
Boehmer systmatically handles the different numerical methods for nonlinear elliptic problems.
Author:
Publisher: Springer Nature
ISBN: 3031743709
Category :
Languages : en
Pages : 444
Book Description
Publisher: Springer Nature
ISBN: 3031743709
Category :
Languages : en
Pages : 444
Book Description
Mathematics of Surfaces XIII
Author: Edwin R. Hancock
Publisher: Springer
ISBN: 3642035965
Category : Computers
Languages : en
Pages : 418
Book Description
This book constitutes the refereed proceedings of the 13th IMA International Conference on the Mathematics of Surfaces held in York, UK in September 2009. The papers in the present volume include seven invited papers, as well as 16 submitted papers. The topics covered include subdivision schemes and their continuity, polar patchworks, compressive algorithms for PDEs, surface invariant functions, swept volume parameterization, Willmore flow, computational conformal geometry, heat kernel embeddings, and self-organizing maps on manifolds, mesh and manifold construction, editing, flattening, morphing and interrogation, dissection of planar shapes, symmetry processing, morphable models, computation of isophotes, point membership classification and vertex blends. Surface types considered encompass polygon meshes as well as parametric and implicit surfaces.
Publisher: Springer
ISBN: 3642035965
Category : Computers
Languages : en
Pages : 418
Book Description
This book constitutes the refereed proceedings of the 13th IMA International Conference on the Mathematics of Surfaces held in York, UK in September 2009. The papers in the present volume include seven invited papers, as well as 16 submitted papers. The topics covered include subdivision schemes and their continuity, polar patchworks, compressive algorithms for PDEs, surface invariant functions, swept volume parameterization, Willmore flow, computational conformal geometry, heat kernel embeddings, and self-organizing maps on manifolds, mesh and manifold construction, editing, flattening, morphing and interrogation, dissection of planar shapes, symmetry processing, morphable models, computation of isophotes, point membership classification and vertex blends. Surface types considered encompass polygon meshes as well as parametric and implicit surfaces.
Multiscale Wavelet Methods for Partial Differential Equations
Author: Wolfgang Dahmen
Publisher: Elsevier
ISBN: 0080537146
Category : Mathematics
Languages : en
Pages : 587
Book Description
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Publisher: Elsevier
ISBN: 0080537146
Category : Mathematics
Languages : en
Pages : 587
Book Description
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Hierarchical Matrices
Author: Mario Bebendorf
Publisher: Springer Science & Business Media
ISBN: 3540771476
Category : Mathematics
Languages : en
Pages : 303
Book Description
Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions. The theory is supported by many numerical experiments from real applications.
Publisher: Springer Science & Business Media
ISBN: 3540771476
Category : Mathematics
Languages : en
Pages : 303
Book Description
Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions. The theory is supported by many numerical experiments from real applications.
Partial Differential Equations
Author: D. Sloan
Publisher: Elsevier
ISBN: 0080929567
Category : Mathematics
Languages : en
Pages : 480
Book Description
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.
Publisher: Elsevier
ISBN: 0080929567
Category : Mathematics
Languages : en
Pages : 480
Book Description
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 828
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 828
Book Description
Electrical & Electronics Abstracts
Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 2240
Book Description
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 2240
Book Description
Wavelet Methods — Elliptic Boundary Value Problems and Control Problems
Author: Angela Kunoth
Publisher: Springer Science & Business Media
ISBN: 332280027X
Category : Mathematics
Languages : en
Pages : 150
Book Description
Diese Monographie spannt einen Bogen rund um die aktuelle Thematik Wavelets, um neueste Entwicklungen anhand aufeinander aufbauender Probleme darzustellen und das konzeptuelle Potenzial von Waveletmethoden für Partielle Differentialgleichungen zu demonstrieren.
Publisher: Springer Science & Business Media
ISBN: 332280027X
Category : Mathematics
Languages : en
Pages : 150
Book Description
Diese Monographie spannt einen Bogen rund um die aktuelle Thematik Wavelets, um neueste Entwicklungen anhand aufeinander aufbauender Probleme darzustellen und das konzeptuelle Potenzial von Waveletmethoden für Partielle Differentialgleichungen zu demonstrieren.