Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790
Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community
Molecular Beam Epitaxy
Molecular Beam Epitaxy
Author: Robin F.C. Farrow
Publisher: Elsevier
ISBN: 0815518404
Category : Technology & Engineering
Languages : en
Pages : 795
Book Description
In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.
Publisher: Elsevier
ISBN: 0815518404
Category : Technology & Engineering
Languages : en
Pages : 795
Book Description
In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.
Molecular Beam Epitaxy
Author: Hajime Asahi
Publisher: John Wiley & Sons
ISBN: 111935501X
Category : Science
Languages : en
Pages : 510
Book Description
Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.
Publisher: John Wiley & Sons
ISBN: 111935501X
Category : Science
Languages : en
Pages : 510
Book Description
Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.
Molecular Beam Epitaxy
Author: Marian A. Herman
Publisher: Springer Science & Business Media
ISBN: 3642970982
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
This first-ever monograph on molecular beam epitaxy (MBE) gives a comprehensive presentation of recent developments in MBE, as applied to crystallization of thin films and device structures of different semiconductor materials. MBE is a high-vacuum technology characterized by relatively low growth temperature, ability to cease or initiate growth abruptly, smoothing of grown surfaces and interfaces on an atomic scale, and the unique facility for in situ analysis of the structural parameters of the growing film. The excellent exploitation parameters of such MBE-produced devices as quantum-well lasers, high electron mobility transistors, and superlattice avalanche photodiodes have caused this technology to be intensively developed. The main text of the book is divided into three parts. The first presents and discusses the more important problems concerning MBE equipment. The second discusses the physico-chemical aspects of the crystallization processes of different materials (mainly semiconductors) and device structures. The third part describes the characterization methods which link the physical properties of the grown film or structures with the technological parameters of the crystallization procedure. Latest achievements in the field are emphasized, such as solid source MBE, including silicon MBE, gas source MBE, especially metalorganic MBE, phase-locked epitaxy and atomic-layer epitaxy, photoassisted molecular layer epitaxy and migration enhanced epitaxy.
Publisher: Springer Science & Business Media
ISBN: 3642970982
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
This first-ever monograph on molecular beam epitaxy (MBE) gives a comprehensive presentation of recent developments in MBE, as applied to crystallization of thin films and device structures of different semiconductor materials. MBE is a high-vacuum technology characterized by relatively low growth temperature, ability to cease or initiate growth abruptly, smoothing of grown surfaces and interfaces on an atomic scale, and the unique facility for in situ analysis of the structural parameters of the growing film. The excellent exploitation parameters of such MBE-produced devices as quantum-well lasers, high electron mobility transistors, and superlattice avalanche photodiodes have caused this technology to be intensively developed. The main text of the book is divided into three parts. The first presents and discusses the more important problems concerning MBE equipment. The second discusses the physico-chemical aspects of the crystallization processes of different materials (mainly semiconductors) and device structures. The third part describes the characterization methods which link the physical properties of the grown film or structures with the technological parameters of the crystallization procedure. Latest achievements in the field are emphasized, such as solid source MBE, including silicon MBE, gas source MBE, especially metalorganic MBE, phase-locked epitaxy and atomic-layer epitaxy, photoassisted molecular layer epitaxy and migration enhanced epitaxy.
Molecular Beam Epitaxy and Heterostructures
Author: L.L. Chang
Publisher: Springer Science & Business Media
ISBN: 940095073X
Category : Technology & Engineering
Languages : en
Pages : 718
Book Description
The NATO Advanced Study Institute on "Molecular Beam Epitaxy (MBE) and Heterostructures" was held at the Ettore Majorana Center for Scientific Culture, Erice, Italy, on March 7-19, 1983, the second course of the International School of Solid-State Device Re search. This volume contains the lectures presented at the Institute. Throughout the history of semiconductor development, the coupling between processing techniques and device structures for both scientific investigations and technological applications has time and again been demonstrated. Newly conceived ideas usually demand the ultimate in existing techniques, which often leads to process innova tions. The emergence of a process, on the other hand, invariably creates opportunities for device improvement and invention. This intimate relationship between the two has most recently been witnessed in MBE and heterostructures, the subject of this Institute. This volume is divided into several sections. Chapter 1 serves as an introduction by providing a perspective of the subject. This is followed by two sections, each containing four chapters, Chapters 2-5 addressing the principles of the MBE process and Chapters 6-9 describ ing its use in the growth of a variety of semiconductors and heteros tructures. The next two sections, Chapters to-II and Chapters 12-15, treat the theory and the electronic properties of the heterostructures, respectively. The focus is on energy quantization of the two dimensional electron system. Chapters 16-17 are devoted to device structures, including both field-effect transistors and lasers and detec tors.
Publisher: Springer Science & Business Media
ISBN: 940095073X
Category : Technology & Engineering
Languages : en
Pages : 718
Book Description
The NATO Advanced Study Institute on "Molecular Beam Epitaxy (MBE) and Heterostructures" was held at the Ettore Majorana Center for Scientific Culture, Erice, Italy, on March 7-19, 1983, the second course of the International School of Solid-State Device Re search. This volume contains the lectures presented at the Institute. Throughout the history of semiconductor development, the coupling between processing techniques and device structures for both scientific investigations and technological applications has time and again been demonstrated. Newly conceived ideas usually demand the ultimate in existing techniques, which often leads to process innova tions. The emergence of a process, on the other hand, invariably creates opportunities for device improvement and invention. This intimate relationship between the two has most recently been witnessed in MBE and heterostructures, the subject of this Institute. This volume is divided into several sections. Chapter 1 serves as an introduction by providing a perspective of the subject. This is followed by two sections, each containing four chapters, Chapters 2-5 addressing the principles of the MBE process and Chapters 6-9 describ ing its use in the growth of a variety of semiconductors and heteros tructures. The next two sections, Chapters to-II and Chapters 12-15, treat the theory and the electronic properties of the heterostructures, respectively. The focus is on energy quantization of the two dimensional electron system. Chapters 16-17 are devoted to device structures, including both field-effect transistors and lasers and detec tors.
Iii-nitride Semiconductor Materials
Author: Zhe Chuan Feng
Publisher: World Scientific
ISBN: 1908979941
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a
Publisher: World Scientific
ISBN: 1908979941
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a
Novel Compound Semiconductor Nanowires
Author: Fumitaro Ishikawa
Publisher: CRC Press
ISBN: 1315340720
Category : Science
Languages : en
Pages : 420
Book Description
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
Publisher: CRC Press
ISBN: 1315340720
Category : Science
Languages : en
Pages : 420
Book Description
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
Metalorganic Vapor Phase Epitaxy (MOVPE)
Author: Stuart Irvine
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Epitaxy of Semiconductors
Author: Udo W. Pohl
Publisher: Springer Science & Business Media
ISBN: 3642329705
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Introduction to Epitaxy provides the essential information for a comprehensive upper-level graduate course treating the crystalline growth of semiconductor heterostructures. Heteroepitaxy represents the basis of advanced electronic and optoelectronic devices today and is considered one of the top fields in materials research. The book covers the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and the description of the major growth techniques metalorganic vapor phase epitaxy, molecular beam epitaxy and liquid phase epitaxy. Cubic semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures and processes during nucleation and growth are treated in detail. The Introduction to Epitaxy requires only little knowledge on solid-state physics. Students of natural sciences, materials science and electrical engineering as well as their lecturers benefit from elementary introductions to theory and practice of epitaxial growth, supported by pertinent references and over 200 detailed illustrations.
Publisher: Springer Science & Business Media
ISBN: 3642329705
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Introduction to Epitaxy provides the essential information for a comprehensive upper-level graduate course treating the crystalline growth of semiconductor heterostructures. Heteroepitaxy represents the basis of advanced electronic and optoelectronic devices today and is considered one of the top fields in materials research. The book covers the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and the description of the major growth techniques metalorganic vapor phase epitaxy, molecular beam epitaxy and liquid phase epitaxy. Cubic semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures and processes during nucleation and growth are treated in detail. The Introduction to Epitaxy requires only little knowledge on solid-state physics. Students of natural sciences, materials science and electrical engineering as well as their lecturers benefit from elementary introductions to theory and practice of epitaxial growth, supported by pertinent references and over 200 detailed illustrations.
Advances in Semiconductor Nanostructures
Author: Alexander V. Latyshev
Publisher: Elsevier
ISBN: 0128105135
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries
Publisher: Elsevier
ISBN: 0128105135
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries