A Classical Introduction to Modern Number Theory

A Classical Introduction to Modern Number Theory PDF Author: K. Ireland
Publisher: Springer Science & Business Media
ISBN: 1475717792
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.

A Classical Introduction to Modern Number Theory

A Classical Introduction to Modern Number Theory PDF Author: K. Ireland
Publisher: Springer Science & Business Media
ISBN: 1475717792
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.

A Modern Introduction To Classical Number Theory

A Modern Introduction To Classical Number Theory PDF Author: Tianxin Cai
Publisher: World Scientific
ISBN: 9811218315
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Natural numbers are the oldest human invention. This book describes their nature, laws, history and current status. It has seven chapters. The first five chapters contain not only the basics of elementary number theory for the convenience of teaching and continuity of reading, but also many latest research results. The first time in history, the traditional name of the Chinese Remainder Theorem is replaced with the Qin Jiushao Theorem in the book to give him a full credit for his establishment of this famous theorem in number theory. Chapter 6 is about the fascinating congruence modulo an integer power, and Chapter 7 introduces a new problem extracted by the author from the classical problems of number theory, which is out of the combination of additive number theory and multiplicative number theory.One feature of the book is the supplementary material after each section, there by broadening the reader's knowledge and imagination. These contents either discuss the rudiments of some aspects or introduce new problems or conjectures and their extensions, such as perfect number problem, Egyptian fraction problem, Goldbach's conjecture, the twin prime conjecture, the 3x + 1 problem, Hilbert Waring problem, Euler's conjecture, Fermat's Last Theorem, Laudau's problem and etc.This book is written for anyone who loves natural numbers, and it can also be read by mathematics majors, graduate students, and researchers. The book contains many illustrations and tables. Readers can appreciate the author's sensitivity of history, broad range of knowledge, and elegant writing style, while benefiting from the classical works and great achievements of masters in number theory.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography PDF Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

Quadratic Irrationals

Quadratic Irrationals PDF Author: Franz Halter-Koch
Publisher: CRC Press
ISBN: 1466591846
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups.T

Lectures on Number Theory

Lectures on Number Theory PDF Author: Peter Gustav Lejeune Dirichlet
Publisher: American Mathematical Soc.
ISBN: 0821820176
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Number Theory and Its History

Number Theory and Its History PDF Author: Oystein Ore
Publisher: Courier Corporation
ISBN: 0486136434
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.

Analytic Number Theory

Analytic Number Theory PDF Author: Henryk Iwaniec
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 615

Get Book Here

Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.

Additive Number Theory The Classical Bases

Additive Number Theory The Classical Bases PDF Author: Melvyn B. Nathanson
Publisher: Springer Science & Business Media
ISBN: 9780387946566
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.

Number Theory Revealed: A Masterclass

Number Theory Revealed: A Masterclass PDF Author: Andrew Granville
Publisher: American Mathematical Society
ISBN: 1470463709
Category : Mathematics
Languages : en
Pages : 617

Get Book Here

Book Description
Number Theory Revealed: A Masterclass acquaints enthusiastic students with the “Queen of Mathematics”. The text offers a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations and presents hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod $p$ and modern twists on traditional questions like the values represented by binary quadratic forms, the anatomy of integers, and elliptic curves. This Masterclass edition contains many additional chapters and appendices not found in Number Theory Revealed: An Introduction, highlighting beautiful developments and inspiring other subjects in mathematics (like algebra). This allows instructors to tailor a course suited to their own (and their students') interests. There are new yet accessible topics like the curvature of circles in a tiling of a circle by circles, the latest discoveries on gaps between primes, a new proof of Mordell's Theorem for congruent elliptic curves, and a discussion of the $abc$-conjecture including its proof for polynomials. About the Author: Andrew Granville is the Canada Research Chair in Number Theory at the University of Montreal and professor of mathematics at University College London. He has won several international writing prizes for exposition in mathematics, including the 2008 Chauvenet Prize and the 2019 Halmos-Ford Prize, and is the author of Prime Suspects (Princeton University Press, 2019), a beautifully illustrated graphic novel murder mystery that explores surprising connections between the anatomies of integers and of permutations.