A Hybrid Sampling-based Path Planning Algorithm for Mobile Robot Navigation in Unknown Environments

A Hybrid Sampling-based Path Planning Algorithm for Mobile Robot Navigation in Unknown Environments PDF Author: Weria Khaksar
Publisher:
ISBN:
Category : Motion
Languages : en
Pages : 644

Get Book Here

Book Description

A Hybrid Sampling-based Path Planning Algorithm for Mobile Robot Navigation in Unknown Environments

A Hybrid Sampling-based Path Planning Algorithm for Mobile Robot Navigation in Unknown Environments PDF Author: Weria Khaksar
Publisher:
ISBN:
Category : Motion
Languages : en
Pages : 644

Get Book Here

Book Description


Bio-inspired Approaches for Real-Time Navigation of Mobile Robots in Unknown Environments

Bio-inspired Approaches for Real-Time Navigation of Mobile Robots in Unknown Environments PDF Author: Lei Wang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Planning Algorithms

Planning Algorithms PDF Author: Steven M. LaValle
Publisher: Cambridge University Press
ISBN: 9780521862059
Category : Computers
Languages : en
Pages : 844

Get Book Here

Book Description
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

An Analysis of Mobile Robot Navigation Algorithms in Unknown Environments

An Analysis of Mobile Robot Navigation Algorithms in Unknown Environments PDF Author: James Sze Ng
Publisher:
ISBN:
Category : Autonomous robots
Languages : en
Pages : 203

Get Book Here

Book Description
This thesis investigates robot navigation algorithms in unknown 2 dimensional environments with the aim of improving performance. The algorithms which perform such navigation are called Bug Algorithms [1,30,62]. Existing algorithms are implemented on a robot simulation system called EyeSim [7] and their performances are measured and analyzed. Similarities and differences in the Bug Family are explored particularly in relation to the methods used to guarantee termination. Seven methods used to guarantee termination in the existing literature are noted and form the basis of the new Bug algorithms: OneBug, MultiBug, LeaveBug, Bug1+ and SensorBug. A new method is created which restricts the leave points to vertices of convex obstacles. SensorBug is a new algorithm designed to use range sensors and with three performance criteria in mind: data gathering frequency, amount of scanning and path length. SensorBug reduces the frequency at which data about the visible environment is gathered and the amount of scanning for each time data is gathered. It is shown that despite the reductions, correct termination is still guaranteed for any environment. Curv1 [19], a robot navigation algorithm, was developed to guide a robot to the target in an unknown environment with a single non-self intersecting guide track. Via an intermediate algorithm Curv2, Curv1 is expanded into a new algorithm, Curv3. Curv3 is capable of pairing multiple start and targets and coping with self-intersecting track.

Advanced Path Planning for Mobile Entities

Advanced Path Planning for Mobile Entities PDF Author: Rastislav Róka
Publisher: BoD – Books on Demand
ISBN: 1789235782
Category : Science
Languages : en
Pages : 200

Get Book Here

Book Description
The book Advanced Path Planning for Mobile Entities provides a platform for practicing researchers, academics, PhD students, and other scientists to design, analyze, evaluate, process, and implement diversiform issues of path planning, including algorithms for multipath and mobile planning and path planning for mobile robots. The nine chapters of the book demonstrate capabilities of advanced path planning for mobile entities to solve scientific and engineering problems with varied degree of complexity.

Robot Motion Planning

Robot Motion Planning PDF Author: Jean-Claude Latombe
Publisher: Springer Science & Business Media
ISBN: 1461540224
Category : Technology & Engineering
Languages : en
Pages : 668

Get Book Here

Book Description
One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.

Autonomous Robot Vehicles

Autonomous Robot Vehicles PDF Author: Ingemar J. Cox
Publisher: Springer Science & Business Media
ISBN: 1461389976
Category : Computers
Languages : en
Pages : 478

Get Book Here

Book Description
Autonomous robot vehicles are vehicles capable of intelligent motion and action without requiring either a guide or teleoperator control. The recent surge of interest in this subject will grow even grow further as their potential applications increase. Autonomous vehicles are currently being studied for use as reconnaissance/exploratory vehicles for planetary exploration, undersea, land and air environments, remote repair and maintenance, material handling systems for offices and factories, and even intelligent wheelchairs for the disabled. This reference is the first to deal directly with the unique and fundamental problems and recent progress associated with autonomous vehicles. The editors have assembled and combined significant material from a multitude of sources, and, in effect, now conviniently provide a coherent organization to a previously scattered and ill-defined field.

Intelligent Robotics and Applications

Intelligent Robotics and Applications PDF Author: Xin-Jun Liu
Publisher: Springer Nature
ISBN: 3030891348
Category : Computers
Languages : en
Pages : 848

Get Book Here

Book Description
The 4-volume set LNAI 13013 – 13016 constitutes the proceedings of the 14th International Conference on Intelligent Robotics and Applications, ICIRA 2021, which took place in Yantai, China, during October 22-25, 2021. The 299 papers included in these proceedings were carefully reviewed and selected from 386 submissions. They were organized in topical sections as follows: Robotics dexterous manipulation; sensors, actuators, and controllers for soft and hybrid robots; cable-driven parallel robot; human-centered wearable robotics; hybrid system modeling and human-machine interface; robot manipulation skills learning; micro_nano materials, devices, and systems for biomedical applications; actuating, sensing, control, and instrumentation for ultra-precision engineering; human-robot collaboration; robotic machining; medical robot; machine intelligence for human motion analytics; human-robot interaction for service robots; novel mechanisms, robots and applications; space robot and on-orbit service; neural learning enhanced motion planning and control for human robot interaction; medical engineering.

Environment Exploration and Path Planning Algorithms for Mobile Robot Navigation Using Sonar

Environment Exploration and Path Planning Algorithms for Mobile Robot Navigation Using Sonar PDF Author: Alexander Zelinsky
Publisher:
ISBN:
Category : Robots
Languages : en
Pages : 554

Get Book Here

Book Description


The Complexity of Robot Motion Planning

The Complexity of Robot Motion Planning PDF Author: John Canny
Publisher: MIT Press
ISBN: 9780262031363
Category : Computers
Languages : en
Pages : 220

Get Book Here

Book Description
The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.