Author: Jesper Lützen
Publisher: Oxford University Press
ISBN: 0192867393
Category : Mathematical analysis
Languages : en
Pages : 305
Book Description
Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. Lützen argues that the role of impossibility results have changed over time. At first, they were considered rather unimportant meta-statements concerning mathematics but gradually they obtained the role of important proper mathematical results that can and should be proved. While mathematical impossibility proofs are more rigorous than impossibility arguments in other areas of life, mathematicians have employed great ingenuity to circumvent impossibilities by changing the rules of the game. For example, complex numbers were invented in order to make impossible equations solvable. In this way, impossibilities have been a strong creative force in the development of mathematics, mathematical physics, and social science.
A History of Mathematical Impossibility
Author: Jesper Lützen
Publisher: Oxford University Press
ISBN: 0192867393
Category : Mathematical analysis
Languages : en
Pages : 305
Book Description
Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. Lützen argues that the role of impossibility results have changed over time. At first, they were considered rather unimportant meta-statements concerning mathematics but gradually they obtained the role of important proper mathematical results that can and should be proved. While mathematical impossibility proofs are more rigorous than impossibility arguments in other areas of life, mathematicians have employed great ingenuity to circumvent impossibilities by changing the rules of the game. For example, complex numbers were invented in order to make impossible equations solvable. In this way, impossibilities have been a strong creative force in the development of mathematics, mathematical physics, and social science.
Publisher: Oxford University Press
ISBN: 0192867393
Category : Mathematical analysis
Languages : en
Pages : 305
Book Description
Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. Lützen argues that the role of impossibility results have changed over time. At first, they were considered rather unimportant meta-statements concerning mathematics but gradually they obtained the role of important proper mathematical results that can and should be proved. While mathematical impossibility proofs are more rigorous than impossibility arguments in other areas of life, mathematicians have employed great ingenuity to circumvent impossibilities by changing the rules of the game. For example, complex numbers were invented in order to make impossible equations solvable. In this way, impossibilities have been a strong creative force in the development of mathematics, mathematical physics, and social science.
Tales of Impossibility
Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 0691218722
Category : Mathematics
Languages : en
Pages : 450
Book Description
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
Publisher: Princeton University Press
ISBN: 0691218722
Category : Mathematics
Languages : en
Pages : 450
Book Description
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
The Arrow Impossibility Theorem
Author: Eric Maskin
Publisher: Columbia University Press
ISBN: 0231153287
Category : Business & Economics
Languages : en
Pages : 164
Book Description
Kenneth Arrow's pathbreaking Òimpossibility theoremÓ was a watershed in the history of welfare economics, voting theory, and collective choice, demonstrating that there is no voting rule that satisfies the four desirable axioms of decisiveness, consensus, nondictatorship, and independence. In this book, Amartya Sen and Eric Maskin explore the implications of ArrowÕs theorem. Sen considers its ongoing utility, exploring the theoremÕs value and limitations in relation to recent research on social reasoning, while Maskin discusses how to design a voting rule that gets us closer to the idealÑgiven that achieving the ideal is impossible. The volume also contains a contextual introduction by social choice scholar Prasanta K. Pattanaik and commentaries from Joseph E. Stiglitz and Kenneth Arrow himself, as well as essays by Sen and Maskin outlining the mathematical proof and framework behind their assertions.
Publisher: Columbia University Press
ISBN: 0231153287
Category : Business & Economics
Languages : en
Pages : 164
Book Description
Kenneth Arrow's pathbreaking Òimpossibility theoremÓ was a watershed in the history of welfare economics, voting theory, and collective choice, demonstrating that there is no voting rule that satisfies the four desirable axioms of decisiveness, consensus, nondictatorship, and independence. In this book, Amartya Sen and Eric Maskin explore the implications of ArrowÕs theorem. Sen considers its ongoing utility, exploring the theoremÕs value and limitations in relation to recent research on social reasoning, while Maskin discusses how to design a voting rule that gets us closer to the idealÑgiven that achieving the ideal is impossible. The volume also contains a contextual introduction by social choice scholar Prasanta K. Pattanaik and commentaries from Joseph E. Stiglitz and Kenneth Arrow himself, as well as essays by Sen and Maskin outlining the mathematical proof and framework behind their assertions.
Yearning for the Impossible
Author: John Stillwell
Publisher: CRC Press
ISBN: 1439865779
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress: - Irrational and Imaginary Numbers - The Fourth Dimension - Curved Space - Infinity and others The author puts t
Publisher: CRC Press
ISBN: 1439865779
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress: - Irrational and Imaginary Numbers - The Fourth Dimension - Curved Space - Infinity and others The author puts t
The Impossibility of Squaring the Circle in the 17th Century
Author: Davide Crippa
Publisher: Springer
ISBN: 3030016382
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book is about James Gregory’s attempt to prove that the quadrature of the circle, the ellipse and the hyperbola cannot be found algebraically. Additonally, the subsequent debates that ensued between Gregory, Christiaan Huygens and G.W. Leibniz are presented and analyzed. These debates eventually culminated with the impossibility result that Leibniz appended to his unpublished treatise on the arithmetical quadrature of the circle. The author shows how the controversy around the possibility of solving the quadrature of the circle by certain means (algebraic curves) pointed to metamathematical issues, particularly to the completeness of algebra with respect to geometry. In other words, the question underlying the debate on the solvability of the circle-squaring problem may be thus phrased: can finite polynomial equations describe any geometrical quantity? As the study reveals, this question was central in the early days of calculus, when transcendental quantities and operations entered the stage. Undergraduate and graduate students in the history of science, in philosophy and in mathematics will find this book appealing as well as mathematicians and historians with broad interests in the history of mathematics.
Publisher: Springer
ISBN: 3030016382
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book is about James Gregory’s attempt to prove that the quadrature of the circle, the ellipse and the hyperbola cannot be found algebraically. Additonally, the subsequent debates that ensued between Gregory, Christiaan Huygens and G.W. Leibniz are presented and analyzed. These debates eventually culminated with the impossibility result that Leibniz appended to his unpublished treatise on the arithmetical quadrature of the circle. The author shows how the controversy around the possibility of solving the quadrature of the circle by certain means (algebraic curves) pointed to metamathematical issues, particularly to the completeness of algebra with respect to geometry. In other words, the question underlying the debate on the solvability of the circle-squaring problem may be thus phrased: can finite polynomial equations describe any geometrical quantity? As the study reveals, this question was central in the early days of calculus, when transcendental quantities and operations entered the stage. Undergraduate and graduate students in the history of science, in philosophy and in mathematics will find this book appealing as well as mathematicians and historians with broad interests in the history of mathematics.
Euler's Gem
Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 0691191999
Category : Mathematics
Languages : en
Pages : 336
Book Description
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Publisher: Princeton University Press
ISBN: 0691191999
Category : Mathematics
Languages : en
Pages : 336
Book Description
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Yearning for the Impossible
Author: John Stillwell
Publisher: CRC Press
ISBN: 0429998023
Category : Mathematics
Languages : en
Pages : 278
Book Description
Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects.
Publisher: CRC Press
ISBN: 0429998023
Category : Mathematics
Languages : en
Pages : 278
Book Description
Yearning for the Impossible: The Surprising Truth of Mathematics, Second Edition explores the history of mathematics from the perspective of the creative tension between common sense and the "impossible" as the author follows the discovery or invention of new concepts that have marked mathematical progress. The author puts these creations into a broader context involving related "impossibilities" from art, literature, philosophy, and physics. This new edition contains many new exercises and commentaries, clearly discussing a wide range of challenging subjects.
Mathematics in Historical Context
Author: Jeff Suzuki
Publisher: MAA
ISBN: 9780883855706
Category : Mathematics
Languages : en
Pages : 432
Book Description
What would Newton see if he looked out his bedroom window? This book describes the world around the important mathematicians of the past, and explores the complex interaction between mathematics, mathematicians, and society. It takes the reader on a grand tour of history from the ancient Egyptians to the twentieth century to show how mathematicians and mathematics were affected by the outside world, and at the same time how the outside world was affected by mathematics and mathematicians. Part biography, part mathematics, and part history, this book provides the interested layperson the background to understand mathematics and the history of mathematics, and is suitable for supplemental reading in any history of mathematics course.
Publisher: MAA
ISBN: 9780883855706
Category : Mathematics
Languages : en
Pages : 432
Book Description
What would Newton see if he looked out his bedroom window? This book describes the world around the important mathematicians of the past, and explores the complex interaction between mathematics, mathematicians, and society. It takes the reader on a grand tour of history from the ancient Egyptians to the twentieth century to show how mathematicians and mathematics were affected by the outside world, and at the same time how the outside world was affected by mathematics and mathematicians. Part biography, part mathematics, and part history, this book provides the interested layperson the background to understand mathematics and the history of mathematics, and is suitable for supplemental reading in any history of mathematics course.
Abel's Proof
Author: Peter Pesic
Publisher: MIT Press
ISBN: 9780262661829
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
The intellectual and human story of a mathematical proof that transformed our ideas about mathematics. In 1824 a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancé. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra—which even Newton resisted—and the gradual acceptance of the usefulness and perhaps even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.
Publisher: MIT Press
ISBN: 9780262661829
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
The intellectual and human story of a mathematical proof that transformed our ideas about mathematics. In 1824 a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancé. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra—which even Newton resisted—and the gradual acceptance of the usefulness and perhaps even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.
Sleight of Mind
Author: Matt Cook
Publisher: MIT Press
ISBN: 0262542293
Category : Mathematics
Languages : en
Pages : 369
Book Description
This “fun, brain-twisting book . . . will make you think” as it explores more than 75 paradoxes in mathematics, philosophy, physics, and the social sciences (Sean Carroll, New York Times–bestselling author of Something Deeply Hidden). Paradox is a sophisticated kind of magic trick. A magician’s purpose is to create the appearance of impossibility, to pull a rabbit from an empty hat. Yet paradox doesn’t require tangibles, like rabbits or hats. Paradox works in the abstract, with words and concepts and symbols, to create the illusion of contradiction. There are no contradictions in reality, but there can appear to be. In Sleight of Mind, Matt Cook and a few collaborators dive deeply into more than 75 paradoxes in mathematics, physics, philosophy, and the social sciences. As each paradox is discussed and resolved, Cook helps readers discover the meaning of knowledge and the proper formation of concepts—and how reason can dispel the illusion of contradiction. The journey begins with “a most ingenious paradox” from Gilbert and Sullivan’s Pirates of Penzance. Readers will then travel from Ancient Greece to cutting-edge laboratories, encounter infinity and its different sizes, and discover mathematical impossibilities inherent in elections. They will tackle conundrums in probability, induction, geometry, and game theory; perform “supertasks”; build apparent perpetual motion machines; meet twins living in different millennia; explore the strange quantum world—and much more.
Publisher: MIT Press
ISBN: 0262542293
Category : Mathematics
Languages : en
Pages : 369
Book Description
This “fun, brain-twisting book . . . will make you think” as it explores more than 75 paradoxes in mathematics, philosophy, physics, and the social sciences (Sean Carroll, New York Times–bestselling author of Something Deeply Hidden). Paradox is a sophisticated kind of magic trick. A magician’s purpose is to create the appearance of impossibility, to pull a rabbit from an empty hat. Yet paradox doesn’t require tangibles, like rabbits or hats. Paradox works in the abstract, with words and concepts and symbols, to create the illusion of contradiction. There are no contradictions in reality, but there can appear to be. In Sleight of Mind, Matt Cook and a few collaborators dive deeply into more than 75 paradoxes in mathematics, physics, philosophy, and the social sciences. As each paradox is discussed and resolved, Cook helps readers discover the meaning of knowledge and the proper formation of concepts—and how reason can dispel the illusion of contradiction. The journey begins with “a most ingenious paradox” from Gilbert and Sullivan’s Pirates of Penzance. Readers will then travel from Ancient Greece to cutting-edge laboratories, encounter infinity and its different sizes, and discover mathematical impossibilities inherent in elections. They will tackle conundrums in probability, induction, geometry, and game theory; perform “supertasks”; build apparent perpetual motion machines; meet twins living in different millennia; explore the strange quantum world—and much more.