Author: Jeremy Gray
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
A History of Abstract Algebra
Author: Jeremy Gray
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
A History of Abstract Algebra
Author: Israel Kleiner
Publisher: Springer Science & Business Media
ISBN: 0817646841
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.
Publisher: Springer Science & Business Media
ISBN: 0817646841
Category : Mathematics
Languages : en
Pages : 175
Book Description
This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.
A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Abstract Algebra
Author: W. E. Deskins
Publisher: Courier Corporation
ISBN: 0486158462
Category : Mathematics
Languages : en
Pages : 660
Book Description
Excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. Features many examples and problems.
Publisher: Courier Corporation
ISBN: 0486158462
Category : Mathematics
Languages : en
Pages : 660
Book Description
Excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. Features many examples and problems.
Introduction to Abstract Algebra
Author: Jonathan D. H. Smith
Publisher: CRC Press
ISBN: 1498731627
Category : Mathematics
Languages : en
Pages : 353
Book Description
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Publisher: CRC Press
ISBN: 1498731627
Category : Mathematics
Languages : en
Pages : 353
Book Description
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Elements of Abstract Algebra
Author: Allan Clark
Publisher: Courier Corporation
ISBN: 0486140350
Category : Mathematics
Languages : en
Pages : 242
Book Description
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
Publisher: Courier Corporation
ISBN: 0486140350
Category : Mathematics
Languages : en
Pages : 242
Book Description
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
A Course in Algebra
Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 0821833189
Category : Mathematics
Languages : en
Pages : 526
Book Description
Great book! The author's teaching experinece shows in every chapter. --Efim Zelmanov, University of California, San Diego Vinberg has written an algebra book that is excellent, both as a classroom text or for self-study. It is plain that years of teaching abstract algebra have enabled him to say the right thing at the right time. --Irving Kaplansky, MSRI This is a comprehensive text on modern algebra written for advanced undergraduate and basic graduate algebra classes. The book is based on courses taught by the author at the Mechanics and Mathematics Department of Moscow State University and at the Mathematical College of the Independent University of Moscow. The unique feature of the book is that it contains almost no technically difficult proofs. Following his point of view on mathematics, the author tried, whenever possible, to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. Another important feature is that the book presents most of the topics on several levels, allowing the student to move smoothly from initial acquaintance to thorough study and deeper understanding of the subject. Presented are basic topics in algebra such as algebraic structures, linear algebra, polynomials, groups, as well as more advanced topics like affine and projective spaces, tensor algebra, Galois theory, Lie groups, associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. Written with extreme care and supplied with more than 200 exercises and 70 figures, the book is also an excellent text for independent study.
Publisher: American Mathematical Soc.
ISBN: 0821833189
Category : Mathematics
Languages : en
Pages : 526
Book Description
Great book! The author's teaching experinece shows in every chapter. --Efim Zelmanov, University of California, San Diego Vinberg has written an algebra book that is excellent, both as a classroom text or for self-study. It is plain that years of teaching abstract algebra have enabled him to say the right thing at the right time. --Irving Kaplansky, MSRI This is a comprehensive text on modern algebra written for advanced undergraduate and basic graduate algebra classes. The book is based on courses taught by the author at the Mechanics and Mathematics Department of Moscow State University and at the Mathematical College of the Independent University of Moscow. The unique feature of the book is that it contains almost no technically difficult proofs. Following his point of view on mathematics, the author tried, whenever possible, to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. Another important feature is that the book presents most of the topics on several levels, allowing the student to move smoothly from initial acquaintance to thorough study and deeper understanding of the subject. Presented are basic topics in algebra such as algebraic structures, linear algebra, polynomials, groups, as well as more advanced topics like affine and projective spaces, tensor algebra, Galois theory, Lie groups, associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. Written with extreme care and supplied with more than 200 exercises and 70 figures, the book is also an excellent text for independent study.
Abstract Algebra
Author: Paul B. Garrett
Publisher: CRC Press
ISBN: 1584886897
Category : Mathematics
Languages : en
Pages : 467
Book Description
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal mapping properties, rather than by constructions whose technical details are irrelevant. Addresses Common Curricular Weaknesses In addition to standard introductory material on the subject, such as Lagrange's and Sylow's theorems in group theory, the text provides important specific illustrations of general theory, discussing in detail finite fields, cyclotomic polynomials, and cyclotomic fields. The book also focuses on broader background, including brief but representative discussions of naive set theory and equivalents of the axiom of choice, quadratic reciprocity, Dirichlet's theorem on primes in arithmetic progressions, and some basic complex analysis. Numerous worked examples and exercises throughout facilitate a thorough understanding of the material.
Publisher: CRC Press
ISBN: 1584886897
Category : Mathematics
Languages : en
Pages : 467
Book Description
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal mapping properties, rather than by constructions whose technical details are irrelevant. Addresses Common Curricular Weaknesses In addition to standard introductory material on the subject, such as Lagrange's and Sylow's theorems in group theory, the text provides important specific illustrations of general theory, discussing in detail finite fields, cyclotomic polynomials, and cyclotomic fields. The book also focuses on broader background, including brief but representative discussions of naive set theory and equivalents of the axiom of choice, quadratic reciprocity, Dirichlet's theorem on primes in arithmetic progressions, and some basic complex analysis. Numerous worked examples and exercises throughout facilitate a thorough understanding of the material.
Abstract Algebra and Solution by Radicals
Author: John Edward Maxfield
Publisher: Courier Corporation
ISBN: 0486477231
Category : Mathematics
Languages : en
Pages : 228
Book Description
The American Mathematical Monthly recommended this advanced undergraduate-level text for teacher education. It starts with groups, rings, fields, and polynomials and advances to Galois theory, radicals and roots of unity, and solution by radicals. Numerous examples, illustrations, commentaries, and exercises enhance the text, along with 13 appendices. 1971 edition.
Publisher: Courier Corporation
ISBN: 0486477231
Category : Mathematics
Languages : en
Pages : 228
Book Description
The American Mathematical Monthly recommended this advanced undergraduate-level text for teacher education. It starts with groups, rings, fields, and polynomials and advances to Galois theory, radicals and roots of unity, and solution by radicals. Numerous examples, illustrations, commentaries, and exercises enhance the text, along with 13 appendices. 1971 edition.
Taming the Unknown
Author: Victor J. Katz
Publisher: Princeton University Press
ISBN: 0691149054
Category : Mathematics
Languages : en
Pages : 504
Book Description
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further developed by medieval and early modern European mathematicians. With the introduction of a flexible and operative symbolism in the sixteenth and seventeenth centuries, algebra entered into a dynamic period characterized by the analytic geometry that could evaluate curves represented by equations in two variables, thereby solving problems in the physics of motion. This new symbolism freed mathematicians to study equations of degrees higher than two and three, ultimately leading to the present abstract era. Taming the Unknown follows algebra’s remarkable growth through different epochs around the globe.
Publisher: Princeton University Press
ISBN: 0691149054
Category : Mathematics
Languages : en
Pages : 504
Book Description
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further developed by medieval and early modern European mathematicians. With the introduction of a flexible and operative symbolism in the sixteenth and seventeenth centuries, algebra entered into a dynamic period characterized by the analytic geometry that could evaluate curves represented by equations in two variables, thereby solving problems in the physics of motion. This new symbolism freed mathematicians to study equations of degrees higher than two and three, ultimately leading to the present abstract era. Taming the Unknown follows algebra’s remarkable growth through different epochs around the globe.