A First Course in Enumerative Combinatorics

A First Course in Enumerative Combinatorics PDF Author: Carl G. Wagner
Publisher: American Mathematical Soc.
ISBN: 1470459957
Category : Education
Languages : en
Pages : 293

Get Book Here

Book Description
A First Course in Enumerative Combinatorics provides an introduction to the fundamentals of enumeration for advanced undergraduates and beginning graduate students in the mathematical sciences. The book offers a careful and comprehensive account of the standard tools of enumeration—recursion, generating functions, sieve and inversion formulas, enumeration under group actions—and their application to counting problems for the fundamental structures of discrete mathematics, including sets and multisets, words and permutations, partitions of sets and integers, and graphs and trees. The author's exposition has been strongly influenced by the work of Rota and Stanley, highlighting bijective proofs, partially ordered sets, and an emphasis on organizing the subject under various unifying themes, including the theory of incidence algebras. In addition, there are distinctive chapters on the combinatorics of finite vector spaces, a detailed account of formal power series, and combinatorial number theory. The reader is assumed to have a knowledge of basic linear algebra and some familiarity with power series. There are over 200 well-designed exercises ranging in difficulty from straightforward to challenging. There are also sixteen large-scale honors projects on special topics appearing throughout the text. The author is a distinguished combinatorialist and award-winning teacher, and he is currently Professor Emeritus of Mathematics and Adjunct Professor of Philosophy at the University of Tennessee. He has published widely in number theory, combinatorics, probability, decision theory, and formal epistemology. His Erdős number is 2.

A First Course in Enumerative Combinatorics

A First Course in Enumerative Combinatorics PDF Author: Carl G. Wagner
Publisher: American Mathematical Soc.
ISBN: 1470459957
Category : Education
Languages : en
Pages : 293

Get Book Here

Book Description
A First Course in Enumerative Combinatorics provides an introduction to the fundamentals of enumeration for advanced undergraduates and beginning graduate students in the mathematical sciences. The book offers a careful and comprehensive account of the standard tools of enumeration—recursion, generating functions, sieve and inversion formulas, enumeration under group actions—and their application to counting problems for the fundamental structures of discrete mathematics, including sets and multisets, words and permutations, partitions of sets and integers, and graphs and trees. The author's exposition has been strongly influenced by the work of Rota and Stanley, highlighting bijective proofs, partially ordered sets, and an emphasis on organizing the subject under various unifying themes, including the theory of incidence algebras. In addition, there are distinctive chapters on the combinatorics of finite vector spaces, a detailed account of formal power series, and combinatorial number theory. The reader is assumed to have a knowledge of basic linear algebra and some familiarity with power series. There are over 200 well-designed exercises ranging in difficulty from straightforward to challenging. There are also sixteen large-scale honors projects on special topics appearing throughout the text. The author is a distinguished combinatorialist and award-winning teacher, and he is currently Professor Emeritus of Mathematics and Adjunct Professor of Philosophy at the University of Tennessee. He has published widely in number theory, combinatorics, probability, decision theory, and formal epistemology. His Erdős number is 2.

Introduction to Enumerative Combinatorics

Introduction to Enumerative Combinatorics PDF Author: Miklós Bóna
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
Written by one of the leading authors and researchers in the field, this comprehensive modern text offers a strong focus on enumeration, a vitally important area in introductory combinatorics crucial for further study in the field. Miklós Bóna's text fills the gap between introductory textbooks in discrete mathematics and advanced graduate textbooks in enumerative combinatorics, and is one of the very first intermediate-level books to focus on enumerative combinatorics. The text can be used for an advanced undergraduate course by thoroughly covering the chapters in Part I on basic enumeration and by selecting a few special topics, or for an introductory graduate course by concentrating on the main areas of enumeration discussed in Part II. The special topics of Part III make the book suitable for a reading course. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073

Get Book Here

Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he

Lessons in Enumerative Combinatorics

Lessons in Enumerative Combinatorics PDF Author: Ömer Eğecioğlu
Publisher: Springer Nature
ISBN: 3030712508
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley–Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.

Counting: The Art of Enumerative Combinatorics

Counting: The Art of Enumerative Combinatorics PDF Author: George E. Martin
Publisher: Springer Science & Business Media
ISBN: 1475748787
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
This book provides an introduction to discrete mathematics. At the end of the book the reader should be able to answer counting questions such as: How many ways are there to stack n poker chips, each of which can be red, white, blue, or green, such that each red chip is adjacent to at least 1 green chip? The book can be used as a textbook for a semester course at the sophomore level. The first five chapters can also serve as a basis for a graduate course for in-service teachers.

Combinatorics: The Art of Counting

Combinatorics: The Art of Counting PDF Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328

Get Book Here

Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.

Enumerative Combinatorics: Volume 1

Enumerative Combinatorics: Volume 1 PDF Author: Richard P. Stanley
Publisher: Cambridge University Press
ISBN: 1107015421
Category : Mathematics
Languages : en
Pages : 641

Get Book Here

Book Description
Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.

Constructive Combinatorics

Constructive Combinatorics PDF Author: Dennis Stanton
Publisher: Springer Science & Business Media
ISBN: 1461249686
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student. Several graduate students in computer science also attend. At Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart [Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that the students are familiar with the techniques of enumeration: basic counting principles, generating functions and inclusion/exclusion. This course evolved from a course on combinatorial algorithms. That course contained a mixture of graph algorithms, optimization and listing algorithms. The computer assignments generally consisted of testing algorithms on examples. While we felt that such material was useful and not without mathematical content, we did not think that the course had a coherent mathematical focus. Furthermore, much of it was being taught, or could have been taught, elsewhere. Graph algorithms and optimization, for instance, were inserted into the graph theory course where they naturally belonged. The computer science department already taught some of the material: the simpler algorithms in a discrete mathematics course; effIciency of algorithms in a more advanced course.

A Course in Enumeration

A Course in Enumeration PDF Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3540390359
Category : Mathematics
Languages : en
Pages : 568

Get Book Here

Book Description
Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from basic notions of combinatorial enumeration to a variety of topics, ranging from algebra to statistical physics. The book is organized in three parts: Basics, Methods, and Topics. The aim is to introduce readers to a fascinating field, and to offer a sophisticated source of information for professional mathematicians desiring to learn more. There are 666 exercises, and every chapter ends with a highlight section, discussing in detail a particularly beautiful or famous result.

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Richard P. Stanley
Publisher: Springer Science & Business Media
ISBN: 1461469988
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.