Author: John F. Kolen
Publisher: John Wiley & Sons
ISBN: 9780780353695
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.
A Field Guide to Dynamical Recurrent Networks
Author: John F. Kolen
Publisher: John Wiley & Sons
ISBN: 9780780353695
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.
Publisher: John Wiley & Sons
ISBN: 9780780353695
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.
Handbook of Dynamic System Modeling
Author: Paul A. Fishwick
Publisher: CRC Press
ISBN: 1420010859
Category : Computers
Languages : en
Pages : 756
Book Description
The topic of dynamic models tends to be splintered across various disciplines, making it difficult to uniformly study the subject. Moreover, the models have a variety of representations, from traditional mathematical notations to diagrammatic and immersive depictions. Collecting all of these expressions of dynamic models, the Handbook of Dynamic Sy
Publisher: CRC Press
ISBN: 1420010859
Category : Computers
Languages : en
Pages : 756
Book Description
The topic of dynamic models tends to be splintered across various disciplines, making it difficult to uniformly study the subject. Moreover, the models have a variety of representations, from traditional mathematical notations to diagrammatic and immersive depictions. Collecting all of these expressions of dynamic models, the Handbook of Dynamic Sy
Artificial Neural Networks - ICANN 2006
Author: Stefanos Kollias
Publisher: Springer Science & Business Media
ISBN: 3540386254
Category : Artificial intelligence
Languages : en
Pages : 1041
Book Description
Publisher: Springer Science & Business Media
ISBN: 3540386254
Category : Artificial intelligence
Languages : en
Pages : 1041
Book Description
Supervised Sequence Labelling with Recurrent Neural Networks
Author: Alex Graves
Publisher: Springer Science & Business Media
ISBN: 3642247962
Category : Computers
Languages : en
Pages : 148
Book Description
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Publisher: Springer Science & Business Media
ISBN: 3642247962
Category : Computers
Languages : en
Pages : 148
Book Description
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Neural Network Modeling and Identification of Dynamical Systems
Author: Yury Tiumentsev
Publisher: Academic Press
ISBN: 0128154306
Category : Science
Languages : en
Pages : 334
Book Description
Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area
Publisher: Academic Press
ISBN: 0128154306
Category : Science
Languages : en
Pages : 334
Book Description
Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area
Innovations in Neural Information Paradigms and Applications
Author: Monica Bianchini
Publisher: Springer Science & Business Media
ISBN: 3642040020
Category : Computers
Languages : en
Pages : 297
Book Description
Tremendous advances in all disciplines including engineering, science, health care, business, avionics, management, and so on, can also be attributed to the development of artificial intelligence paradigms. In fact, researchers are always interested in desi- ing machines which can mimic the human behaviour in a limited way. Therefore, the study of neural information processing paradigms have generated great interest among researchers, in that machine learning, borrowing features from human intelligence and applying them as algorithms in a computer friendly way, involves not only Mathem- ics and Computer Science but also Biology, Psychology, Cognition and Philosophy (among many other disciplines). Generally speaking, computers are fundamentally well-suited for performing au- matic computations, based on fixed, programmed rules, i.e. in facing efficiently and reliably monotonous tasks, often extremely time-consuming from a human point of view. Nevertheless, unlike humans, computers have troubles in understanding specific situations, and adapting to new working environments. Artificial intelligence and, in particular, machine learning techniques aim at improving computers behaviour in tackling such complex tasks. On the other hand, humans have an interesting approach to problem-solving, based on abstract thought, high-level deliberative reasoning and pattern recognition. Artificial intelligence can help us understanding this process by recreating it, then potentially enabling us to enhance it beyond our current capabilities.
Publisher: Springer Science & Business Media
ISBN: 3642040020
Category : Computers
Languages : en
Pages : 297
Book Description
Tremendous advances in all disciplines including engineering, science, health care, business, avionics, management, and so on, can also be attributed to the development of artificial intelligence paradigms. In fact, researchers are always interested in desi- ing machines which can mimic the human behaviour in a limited way. Therefore, the study of neural information processing paradigms have generated great interest among researchers, in that machine learning, borrowing features from human intelligence and applying them as algorithms in a computer friendly way, involves not only Mathem- ics and Computer Science but also Biology, Psychology, Cognition and Philosophy (among many other disciplines). Generally speaking, computers are fundamentally well-suited for performing au- matic computations, based on fixed, programmed rules, i.e. in facing efficiently and reliably monotonous tasks, often extremely time-consuming from a human point of view. Nevertheless, unlike humans, computers have troubles in understanding specific situations, and adapting to new working environments. Artificial intelligence and, in particular, machine learning techniques aim at improving computers behaviour in tackling such complex tasks. On the other hand, humans have an interesting approach to problem-solving, based on abstract thought, high-level deliberative reasoning and pattern recognition. Artificial intelligence can help us understanding this process by recreating it, then potentially enabling us to enhance it beyond our current capabilities.
The Sixth International Symposium on Neural Networks (ISNN 2009)
Author: Hongwei Wang
Publisher: Springer Science & Business Media
ISBN: 3642012167
Category : Computers
Languages : en
Pages : 904
Book Description
This volume of Advances in Soft Computing and Lecture Notes in Computer th Science vols. 5551, 5552 and 5553, constitute the Proceedings of the 6 Inter- tional Symposium of Neural Networks (ISNN 2009) held in Wuhan, China during May 26–29, 2009. ISNN is a prestigious annual symposium on neural networks with past events held in Dalian (2004), Chongqing (2005), Chengdu (2006), N- jing (2007) and Beijing (2008). Over the past few years, ISNN has matured into a well-established series of international conference on neural networks and their applications to other fields. Following this tradition, ISNN 2009 provided an a- demic forum for the participants to disseminate their new research findings and discuss emerging areas of research. Also, it created a stimulating environment for the participants to interact and exchange information on future research challenges and opportunities of neural networks and their applications. ISNN 2009 received 1,235 submissions from about 2,459 authors in 29 co- tries and regions (Australia, Brazil, Canada, China, Democratic People's Republic of Korea, Finland, Germany, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Norway, Qatar, Republic of Korea, Singapore, Spain, Taiwan, Thailand, Tunisia, United Kingdom, United States, Venezuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on rigorous reviews by the Program Committee members and reviewers, 95 high-quality papers were selected to be published in this volume.
Publisher: Springer Science & Business Media
ISBN: 3642012167
Category : Computers
Languages : en
Pages : 904
Book Description
This volume of Advances in Soft Computing and Lecture Notes in Computer th Science vols. 5551, 5552 and 5553, constitute the Proceedings of the 6 Inter- tional Symposium of Neural Networks (ISNN 2009) held in Wuhan, China during May 26–29, 2009. ISNN is a prestigious annual symposium on neural networks with past events held in Dalian (2004), Chongqing (2005), Chengdu (2006), N- jing (2007) and Beijing (2008). Over the past few years, ISNN has matured into a well-established series of international conference on neural networks and their applications to other fields. Following this tradition, ISNN 2009 provided an a- demic forum for the participants to disseminate their new research findings and discuss emerging areas of research. Also, it created a stimulating environment for the participants to interact and exchange information on future research challenges and opportunities of neural networks and their applications. ISNN 2009 received 1,235 submissions from about 2,459 authors in 29 co- tries and regions (Australia, Brazil, Canada, China, Democratic People's Republic of Korea, Finland, Germany, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Norway, Qatar, Republic of Korea, Singapore, Spain, Taiwan, Thailand, Tunisia, United Kingdom, United States, Venezuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on rigorous reviews by the Program Committee members and reviewers, 95 high-quality papers were selected to be published in this volume.
Operations Research Proceedings 2010
Author: Bo Hu
Publisher: Springer Science & Business Media
ISBN: 3642200095
Category : Business & Economics
Languages : en
Pages : 664
Book Description
This book contains selected papers from the symposium "Operations Research 2010" which was held from September 1-3, 2010 at the "Universität der Bundeswehr München", Germany. The international conference, which also serves as the annual meeting of the German Operations Research Society (GOR), attracted more than 600 participants from more than thirty countries. The general theme "Mastering Complexity" focusses on a natural component of the globalization process. Financial markets, traffic systems, network topologies and, last but not least, energy resource management, all contain complex behaviour and economic interdependencies which necessitate a scientific solution. Operations Research is one of the key instruments to model, simulate and analyze such systems. In the process of developing optimal solutions, suitable heuristics and efficient procedures are some of the challenges which are discussed in this volume.
Publisher: Springer Science & Business Media
ISBN: 3642200095
Category : Business & Economics
Languages : en
Pages : 664
Book Description
This book contains selected papers from the symposium "Operations Research 2010" which was held from September 1-3, 2010 at the "Universität der Bundeswehr München", Germany. The international conference, which also serves as the annual meeting of the German Operations Research Society (GOR), attracted more than 600 participants from more than thirty countries. The general theme "Mastering Complexity" focusses on a natural component of the globalization process. Financial markets, traffic systems, network topologies and, last but not least, energy resource management, all contain complex behaviour and economic interdependencies which necessitate a scientific solution. Operations Research is one of the key instruments to model, simulate and analyze such systems. In the process of developing optimal solutions, suitable heuristics and efficient procedures are some of the challenges which are discussed in this volume.
Artificial Neural Networks and Machine Learning -- ICANN 2013
Author: Valeri Mladenov
Publisher: Springer
ISBN: 3642407285
Category : Computers
Languages : en
Pages : 660
Book Description
The book constitutes the proceedings of the 23rd International Conference on Artificial Neural Networks, ICANN 2013, held in Sofia, Bulgaria, in September 2013. The 78 papers included in the proceedings were carefully reviewed and selected from 128 submissions. The focus of the papers is on following topics: neurofinance graphical network models, brain machine interfaces, evolutionary neural networks, neurodynamics, complex systems, neuroinformatics, neuroengineering, hybrid systems, computational biology, neural hardware, bioinspired embedded systems, and collective intelligence.
Publisher: Springer
ISBN: 3642407285
Category : Computers
Languages : en
Pages : 660
Book Description
The book constitutes the proceedings of the 23rd International Conference on Artificial Neural Networks, ICANN 2013, held in Sofia, Bulgaria, in September 2013. The 78 papers included in the proceedings were carefully reviewed and selected from 128 submissions. The focus of the papers is on following topics: neurofinance graphical network models, brain machine interfaces, evolutionary neural networks, neurodynamics, complex systems, neuroinformatics, neuroengineering, hybrid systems, computational biology, neural hardware, bioinspired embedded systems, and collective intelligence.
Artificial Neural Networks - ICANN 2008
Author: Vera Kůrková
Publisher: Springer Science & Business Media
ISBN: 3540875352
Category : Computers
Languages : en
Pages : 1053
Book Description
This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.
Publisher: Springer Science & Business Media
ISBN: 3540875352
Category : Computers
Languages : en
Pages : 1053
Book Description
This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.