Author: M. M. Rao
Publisher: Courier Corporation
ISBN: 0486481220
Category : Mathematics
Languages : en
Pages : 322
Book Description
Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.
Foundations of Stochastic Analysis
Author: M. M. Rao
Publisher: Courier Corporation
ISBN: 0486481220
Category : Mathematics
Languages : en
Pages : 322
Book Description
Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.
Publisher: Courier Corporation
ISBN: 0486481220
Category : Mathematics
Languages : en
Pages : 322
Book Description
Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.
Stochastic Analysis
Author: Shigeo Kusuoka
Publisher: Springer Nature
ISBN: 9811588643
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
Publisher: Springer Nature
ISBN: 9811588643
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
Applied Stochastic Analysis
Author: Weinan E
Publisher: American Mathematical Soc.
ISBN: 1470465698
Category : Education
Languages : en
Pages : 305
Book Description
This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Publisher: American Mathematical Soc.
ISBN: 1470465698
Category : Education
Languages : en
Pages : 305
Book Description
This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Basic Stochastic Processes
Author: Zdzislaw Brzezniak
Publisher: Springer Science & Business Media
ISBN: 9783540761754
Category : Mathematics
Languages : en
Pages : 244
Book Description
Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
Publisher: Springer Science & Business Media
ISBN: 9783540761754
Category : Mathematics
Languages : en
Pages : 244
Book Description
Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
A Course in Applied Stochastic Processes
Author: A. Goswami
Publisher: Springer
ISBN: 9386279312
Category : Mathematics
Languages : en
Pages : 226
Book Description
Publisher: Springer
ISBN: 9386279312
Category : Mathematics
Languages : en
Pages : 226
Book Description
Stochastic Analysis and Diffusion Processes
Author: Gopinath Kallianpur
Publisher: OUP Oxford
ISBN: 0191004529
Category : Mathematics
Languages : en
Pages : 368
Book Description
Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Itô formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.
Publisher: OUP Oxford
ISBN: 0191004529
Category : Mathematics
Languages : en
Pages : 368
Book Description
Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Itô formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.
Introduction to Stochastic Analysis
Author: Vigirdas Mackevicius
Publisher: John Wiley & Sons
ISBN: 1118603249
Category : Mathematics
Languages : en
Pages : 220
Book Description
This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.
Publisher: John Wiley & Sons
ISBN: 1118603249
Category : Mathematics
Languages : en
Pages : 220
Book Description
This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.
Essentials of Stochastic Processes
Author: Richard Durrett
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282
Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282
Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Stochastic Analysis
Author: Ichirō Shigekawa
Publisher: American Mathematical Soc.
ISBN: 9780821826263
Category : Mathematics
Languages : en
Pages : 202
Book Description
This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal
Publisher: American Mathematical Soc.
ISBN: 9780821826263
Category : Mathematics
Languages : en
Pages : 202
Book Description
This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal
Semimartingales
Author: Michel Métivier
Publisher: Walter de Gruyter
ISBN: 3110845563
Category : Mathematics
Languages : en
Pages : 305
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Publisher: Walter de Gruyter
ISBN: 3110845563
Category : Mathematics
Languages : en
Pages : 305
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.