Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
A Concise Course in Algebraic Topology
Author: J. Peter May
Publisher:
ISBN: 9787519266592
Category : Algebraic topology
Languages : en
Pages : 243
Book Description
Publisher:
ISBN: 9787519266592
Category : Algebraic topology
Languages : en
Pages : 243
Book Description
More Concise Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 0226511782
Category : Mathematics
Languages : en
Pages : 544
Book Description
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Publisher: University of Chicago Press
ISBN: 0226511782
Category : Mathematics
Languages : en
Pages : 544
Book Description
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.
Differential Forms in Algebraic Topology
Author: Raoul Bott
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319
Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319
Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Introduction to Homotopy Theory
Author: Paul Selick
Publisher: American Mathematical Soc.
ISBN: 9780821844366
Category : Mathematics
Languages : en
Pages : 220
Book Description
Offers a summary for students and non-specialists who are interested in learning the basics of algebraic topology. This book covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, and generalized homology and cohomology operations.
Publisher: American Mathematical Soc.
ISBN: 9780821844366
Category : Mathematics
Languages : en
Pages : 220
Book Description
Offers a summary for students and non-specialists who are interested in learning the basics of algebraic topology. This book covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, and generalized homology and cohomology operations.
Lectures On Algebraic Topology
Author: Haynes R Miller
Publisher: World Scientific
ISBN: 9811231265
Category : Mathematics
Languages : en
Pages : 405
Book Description
Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.
Publisher: World Scientific
ISBN: 9811231265
Category : Mathematics
Languages : en
Pages : 405
Book Description
Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.
A Concise Introduction to Algebraic Varieties
Author: Brian Osserman
Publisher: American Mathematical Society
ISBN: 1470466651
Category : Mathematics
Languages : en
Pages : 259
Book Description
Publisher: American Mathematical Society
ISBN: 1470466651
Category : Mathematics
Languages : en
Pages : 259
Book Description
Elements of Homology Theory
Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 0821838121
Category : Mathematics
Languages : en
Pages : 432
Book Description
The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
Publisher: American Mathematical Soc.
ISBN: 0821838121
Category : Mathematics
Languages : en
Pages : 432
Book Description
The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
Introduction to Algebraic Topology
Author: Holger Kammeyer
Publisher: Springer Nature
ISBN: 3030983137
Category : Mathematics
Languages : en
Pages : 186
Book Description
This textbook provides a succinct introduction to algebraic topology. It follows a modern categorical approach from the beginning and gives ample motivation throughout so that students will find this an ideal first encounter to the field. Topics are treated in a self-contained manner, making this a convenient resource for instructors searching for a comprehensive overview of the area. It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axioms for singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology. Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.
Publisher: Springer Nature
ISBN: 3030983137
Category : Mathematics
Languages : en
Pages : 186
Book Description
This textbook provides a succinct introduction to algebraic topology. It follows a modern categorical approach from the beginning and gives ample motivation throughout so that students will find this an ideal first encounter to the field. Topics are treated in a self-contained manner, making this a convenient resource for instructors searching for a comprehensive overview of the area. It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axioms for singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology. Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.