Author: Sason S. Shaik
Publisher: John Wiley & Sons
ISBN: 0470192585
Category : Science
Languages : en
Pages : 332
Book Description
This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.
A Chemist's Guide to Valence Bond Theory
Author: Sason S. Shaik
Publisher: John Wiley & Sons
ISBN: 0470192585
Category : Science
Languages : en
Pages : 332
Book Description
This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.
Publisher: John Wiley & Sons
ISBN: 0470192585
Category : Science
Languages : en
Pages : 332
Book Description
This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.
A Chemist's Guide to Valence Bond Theory
Author: Sason S. Shaik
Publisher: John Wiley & Sons
ISBN: 0470037350
Category : Science
Languages : en
Pages : 332
Book Description
This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.
Publisher: John Wiley & Sons
ISBN: 0470037350
Category : Science
Languages : en
Pages : 332
Book Description
This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.
Chemical Modelling
Author: Alan Hinchliffe
Publisher: Royal Society of Chemistry
ISBN: 1847558895
Category : Science
Languages : en
Pages : 486
Book Description
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Volume 5 covers literature published from June 2005 to May 2007.
Publisher: Royal Society of Chemistry
ISBN: 1847558895
Category : Science
Languages : en
Pages : 486
Book Description
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Volume 5 covers literature published from June 2005 to May 2007.
Quantum Biochemistry
Author: Chérif F. Matta
Publisher: John Wiley & Sons
ISBN: 352762922X
Category : Science
Languages : en
Pages : 978
Book Description
Divided into five major parts, the two volumes of this ready reference cover the tailoring of theoretical methods for biochemical computations, as well as the many kinds of biomolecules, reaction and transition state elucidation, conformational flexibility determination, and drug design. Throughout, the chapters gradually build up from introductory level to comprehensive reviews of the latest research, and include all important compound classes, such as DNA, RNA, enzymes, vitamins, and heterocyclic compounds. The result is in-depth and vital knowledge for both readers already working in the field as well as those entering it. Includes contributions by Prof. Ada Yonath (Nobel Prize in Chemistry 2009) and Prof. Jerome Karle (Nobel Prize in Chemistry 1985).
Publisher: John Wiley & Sons
ISBN: 352762922X
Category : Science
Languages : en
Pages : 978
Book Description
Divided into five major parts, the two volumes of this ready reference cover the tailoring of theoretical methods for biochemical computations, as well as the many kinds of biomolecules, reaction and transition state elucidation, conformational flexibility determination, and drug design. Throughout, the chapters gradually build up from introductory level to comprehensive reviews of the latest research, and include all important compound classes, such as DNA, RNA, enzymes, vitamins, and heterocyclic compounds. The result is in-depth and vital knowledge for both readers already working in the field as well as those entering it. Includes contributions by Prof. Ada Yonath (Nobel Prize in Chemistry 2009) and Prof. Jerome Karle (Nobel Prize in Chemistry 1985).
Introductory Organic Chemistry and Hydrocarbons
Author: Caio Lima Firme
Publisher: CRC Press
ISBN: 1351205773
Category : Science
Languages : en
Pages : 445
Book Description
A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.
Publisher: CRC Press
ISBN: 1351205773
Category : Science
Languages : en
Pages : 445
Book Description
A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.
Complementary Bonding Analysis
Author: Simon Grabowsky
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311066027X
Category : Science
Languages : en
Pages : 412
Book Description
As chemical bonds are not observable, there are various theories and models for their description. This book presents a selection of conceptually very different and historically competing views on chemical bonding analysis from quantum chemistry and quantum crystallography. It not only explains the principles and theories behind the methods, but also provides practical examples of how to derive bonding descriptors with modern software and of how to interpret them.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311066027X
Category : Science
Languages : en
Pages : 412
Book Description
As chemical bonds are not observable, there are various theories and models for their description. This book presents a selection of conceptually very different and historically competing views on chemical bonding analysis from quantum chemistry and quantum crystallography. It not only explains the principles and theories behind the methods, but also provides practical examples of how to derive bonding descriptors with modern software and of how to interpret them.
Structural Chemistry
Author: Mihai V. Putz
Publisher: Springer
ISBN: 3319558757
Category : Science
Languages : en
Pages : 825
Book Description
This book explains key concepts in theoretical chemistry and explores practical applications in structural chemistry. For experimentalists, it highlights concepts that explain the underlying mechanisms of observed phenomena, and at the same time provides theoreticians with explanations of the principles and techniques that are important in property design. Themes covered include conceptual and applied wave functions and density functional theory (DFT) methods, electronegativity and hard and soft (Lewis) acid and base (HSAB) concepts, hybridization and aromaticity, molecular magnetism, spin transition and thermochromism. Offering insights into designing new properties in advanced functional materials, it is a valuable resource for undergraduates of physical chemistry, cluster chemistry and structure/reactivity courses as well as graduates and researchers in the fields of physical chemistry, chemical modeling and functional materials.
Publisher: Springer
ISBN: 3319558757
Category : Science
Languages : en
Pages : 825
Book Description
This book explains key concepts in theoretical chemistry and explores practical applications in structural chemistry. For experimentalists, it highlights concepts that explain the underlying mechanisms of observed phenomena, and at the same time provides theoreticians with explanations of the principles and techniques that are important in property design. Themes covered include conceptual and applied wave functions and density functional theory (DFT) methods, electronegativity and hard and soft (Lewis) acid and base (HSAB) concepts, hybridization and aromaticity, molecular magnetism, spin transition and thermochromism. Offering insights into designing new properties in advanced functional materials, it is a valuable resource for undergraduates of physical chemistry, cluster chemistry and structure/reactivity courses as well as graduates and researchers in the fields of physical chemistry, chemical modeling and functional materials.
Bonding in Electron-Rich Molecules
Author: Richard D. Harcourt
Publisher: Springer
ISBN: 331916676X
Category : Science
Languages : en
Pages : 328
Book Description
This second edition was updated to include some of the recent developments, such as “increased-valence” structures for 3-electron-3-centre bonding, benzene, electron conduction and reaction mechanisms, spiral chain O4 polymers and recoupled-pair bonding. The author provides qualitative molecular orbital and valence-bond descriptions of the electronic structures for primarily electron-rich molecules, with strong emphasis given to the valence-bond approach that uses “increased-valence” structures. He describes how “long-bond” Lewis structures as well as standard Lewis structures are incorporated into “increased-valence” structures for electron-rich molecules. “Increased-valence” structures involve more electrons in bonding than do their component Lewis structures, and are used to provide interpretations for molecular electronic structure, bond properties and reactivities. Attention is also given to Pauling “3-electron bonds”, which are usually diatomic components of “increased-valence” structures for electron-rich molecules.
Publisher: Springer
ISBN: 331916676X
Category : Science
Languages : en
Pages : 328
Book Description
This second edition was updated to include some of the recent developments, such as “increased-valence” structures for 3-electron-3-centre bonding, benzene, electron conduction and reaction mechanisms, spiral chain O4 polymers and recoupled-pair bonding. The author provides qualitative molecular orbital and valence-bond descriptions of the electronic structures for primarily electron-rich molecules, with strong emphasis given to the valence-bond approach that uses “increased-valence” structures. He describes how “long-bond” Lewis structures as well as standard Lewis structures are incorporated into “increased-valence” structures for electron-rich molecules. “Increased-valence” structures involve more electrons in bonding than do their component Lewis structures, and are used to provide interpretations for molecular electronic structure, bond properties and reactivities. Attention is also given to Pauling “3-electron bonds”, which are usually diatomic components of “increased-valence” structures for electron-rich molecules.
Exploring Chemical Concepts Through Theory and Computation
Author: Shubin Liu
Publisher: John Wiley & Sons
ISBN: 3527352481
Category : Science
Languages : en
Pages : 594
Book Description
Deep, theoretical resource on the essence of chemistry, explaining the sixteen most important concepts including redox states and bond types Exploring Chemical Concepts Through Theory and Computation provides a comprehensive account of how the three widely used theoretical frameworks of valence bond theory, molecular orbital theory, and density functional theory, along with a variety of important chemical concepts, can between them describe and efficiently and reliably predict key chemical parameters and phenomena. By comparing the three main theoretical frameworks, readers will become competent in choosing the right modeling approach for their task. The authors go beyond a simple comparison of existing algorithms to show how data-driven theories can explain why chemical compounds behave the way they do, thus promoting a deeper understanding of the essence of chemistry. The text is contributed to by top theoretical and computational chemists who have turned computational chemistry into today's data-driven and application-oriented science. Exploring Chemical Concepts Through Theory and Computation discusses topics including: Orbital-based approaches, density-based approaches, chemical bonding, partial charges, atoms in molecules, oxidation states, aromaticity and antiaromaticity, and acidity and basicity Electronegativity, hardness, softness, HSAB, sigma-hole interactions, charge transport and energy transfer, and homogeneous and heterogeneous catalysis Electrophilicity, nucleophilicity, cooperativity, frustration, homochirality, and energy decomposition Chemical concepts in solids, excited states, spectroscopy and machine learning, and catalysis and machine learning, and as well as key connections between related concepts Aimed at both novice and experienced computational, theoretical, and physical chemists, Exploring Chemical Concepts Through Theory and Computation is an essential reference to gain a deeper, more advanced holistic understanding of the field of chemistry as a whole.
Publisher: John Wiley & Sons
ISBN: 3527352481
Category : Science
Languages : en
Pages : 594
Book Description
Deep, theoretical resource on the essence of chemistry, explaining the sixteen most important concepts including redox states and bond types Exploring Chemical Concepts Through Theory and Computation provides a comprehensive account of how the three widely used theoretical frameworks of valence bond theory, molecular orbital theory, and density functional theory, along with a variety of important chemical concepts, can between them describe and efficiently and reliably predict key chemical parameters and phenomena. By comparing the three main theoretical frameworks, readers will become competent in choosing the right modeling approach for their task. The authors go beyond a simple comparison of existing algorithms to show how data-driven theories can explain why chemical compounds behave the way they do, thus promoting a deeper understanding of the essence of chemistry. The text is contributed to by top theoretical and computational chemists who have turned computational chemistry into today's data-driven and application-oriented science. Exploring Chemical Concepts Through Theory and Computation discusses topics including: Orbital-based approaches, density-based approaches, chemical bonding, partial charges, atoms in molecules, oxidation states, aromaticity and antiaromaticity, and acidity and basicity Electronegativity, hardness, softness, HSAB, sigma-hole interactions, charge transport and energy transfer, and homogeneous and heterogeneous catalysis Electrophilicity, nucleophilicity, cooperativity, frustration, homochirality, and energy decomposition Chemical concepts in solids, excited states, spectroscopy and machine learning, and catalysis and machine learning, and as well as key connections between related concepts Aimed at both novice and experienced computational, theoretical, and physical chemists, Exploring Chemical Concepts Through Theory and Computation is an essential reference to gain a deeper, more advanced holistic understanding of the field of chemistry as a whole.
The VSEPR Model of Molecular Geometry
Author: Ronald J Gillespie
Publisher: Courier Corporation
ISBN: 0486310523
Category : Science
Languages : en
Pages : 274
Book Description
Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals. Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the applications of the VSEPR model and its theoretical basis. Helpful data on molecular geometries, bond lengths, and bond angles appear in tables and other graphics.
Publisher: Courier Corporation
ISBN: 0486310523
Category : Science
Languages : en
Pages : 274
Book Description
Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals. Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the applications of the VSEPR model and its theoretical basis. Helpful data on molecular geometries, bond lengths, and bond angles appear in tables and other graphics.