Author: Raquell M. Holmes
Publisher: John Wiley & Sons
ISBN: 9780470139349
Category : Science
Languages : en
Pages : 224
Book Description
A step-by-step guide to using computational tools to solve problems in cell biology Combining expert discussion with examples that can be reproduced by the reader, A Cell Biologist's Guide to Modeling and Bioinformatics introduces an array of informatics tools that are available for analyzing biological data and modeling cellular processes. You learn to fully leverage public databases and create your own computational models. All that you need is a working knowledge of algebra and cellular biology; the author provides all the other tools you need to understand the necessary statistical and mathematical methods. Coverage is divided into two main categories: Molecular sequence database chapters are dedicated to gaining an understanding of tools and strategies—including queries, alignment methods, and statistical significance measures—needed to improve searches for sequence similarity, protein families, and putative functional domains. Discussions of sequence alignments and biological database searching focus on publicly available resources used for background research and the characterization of novel gene products. Modeling chapters take you through all the steps involved in creating a computational model for such basic research areas as cell cycle, calcium dynamics, and glycolysis. Each chapter introduces a new simulation tooland is based on published research. The combination creates a rich context for ongoing skill and knowledge development in modeling biological research systems. Students and professional cell biologists can develop the basic skills needed to learn computational cell biology. This unique text, with its step-by-step instruction, enables you to test and develop your new bioinformatics and modeling skills. References are provided to help you take advantage of more advanced techniques, technologies, and training.
A Cell Biologist's Guide to Modeling and Bioinformatics
Author: Raquell M. Holmes
Publisher: John Wiley & Sons
ISBN: 9780470139349
Category : Science
Languages : en
Pages : 224
Book Description
A step-by-step guide to using computational tools to solve problems in cell biology Combining expert discussion with examples that can be reproduced by the reader, A Cell Biologist's Guide to Modeling and Bioinformatics introduces an array of informatics tools that are available for analyzing biological data and modeling cellular processes. You learn to fully leverage public databases and create your own computational models. All that you need is a working knowledge of algebra and cellular biology; the author provides all the other tools you need to understand the necessary statistical and mathematical methods. Coverage is divided into two main categories: Molecular sequence database chapters are dedicated to gaining an understanding of tools and strategies—including queries, alignment methods, and statistical significance measures—needed to improve searches for sequence similarity, protein families, and putative functional domains. Discussions of sequence alignments and biological database searching focus on publicly available resources used for background research and the characterization of novel gene products. Modeling chapters take you through all the steps involved in creating a computational model for such basic research areas as cell cycle, calcium dynamics, and glycolysis. Each chapter introduces a new simulation tooland is based on published research. The combination creates a rich context for ongoing skill and knowledge development in modeling biological research systems. Students and professional cell biologists can develop the basic skills needed to learn computational cell biology. This unique text, with its step-by-step instruction, enables you to test and develop your new bioinformatics and modeling skills. References are provided to help you take advantage of more advanced techniques, technologies, and training.
Publisher: John Wiley & Sons
ISBN: 9780470139349
Category : Science
Languages : en
Pages : 224
Book Description
A step-by-step guide to using computational tools to solve problems in cell biology Combining expert discussion with examples that can be reproduced by the reader, A Cell Biologist's Guide to Modeling and Bioinformatics introduces an array of informatics tools that are available for analyzing biological data and modeling cellular processes. You learn to fully leverage public databases and create your own computational models. All that you need is a working knowledge of algebra and cellular biology; the author provides all the other tools you need to understand the necessary statistical and mathematical methods. Coverage is divided into two main categories: Molecular sequence database chapters are dedicated to gaining an understanding of tools and strategies—including queries, alignment methods, and statistical significance measures—needed to improve searches for sequence similarity, protein families, and putative functional domains. Discussions of sequence alignments and biological database searching focus on publicly available resources used for background research and the characterization of novel gene products. Modeling chapters take you through all the steps involved in creating a computational model for such basic research areas as cell cycle, calcium dynamics, and glycolysis. Each chapter introduces a new simulation tooland is based on published research. The combination creates a rich context for ongoing skill and knowledge development in modeling biological research systems. Students and professional cell biologists can develop the basic skills needed to learn computational cell biology. This unique text, with its step-by-step instruction, enables you to test and develop your new bioinformatics and modeling skills. References are provided to help you take advantage of more advanced techniques, technologies, and training.
Computational Cell Biology
Author: Christopher P. Fall
Publisher: Springer Science & Business Media
ISBN: 0387224599
Category : Science
Languages : en
Pages : 484
Book Description
This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.
Publisher: Springer Science & Business Media
ISBN: 0387224599
Category : Science
Languages : en
Pages : 484
Book Description
This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.
Modeling in Systems Biology
Author: Ina Koch
Publisher: Springer Science & Business Media
ISBN: 1849964742
Category : Computers
Languages : en
Pages : 378
Book Description
The emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.
Publisher: Springer Science & Business Media
ISBN: 1849964742
Category : Computers
Languages : en
Pages : 378
Book Description
The emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.
The Digital Cell
Author: Stephen J. Royle
Publisher:
ISBN: 9781621822783
Category : Science
Languages : en
Pages : 200
Book Description
"Cell biology is becoming an increasingly quantitative field, as technical advances mean researchers now routinely capture vast amounts of data. This handbook is an essential guide to the computational approaches, image processing and analysis techniques, and basic programming skills that are now part of the skill set of anyone working in the field"--
Publisher:
ISBN: 9781621822783
Category : Science
Languages : en
Pages : 200
Book Description
"Cell biology is becoming an increasingly quantitative field, as technical advances mean researchers now routinely capture vast amounts of data. This handbook is an essential guide to the computational approaches, image processing and analysis techniques, and basic programming skills that are now part of the skill set of anyone working in the field"--
A Practical Guide To Cancer Systems Biology
Author: Hsueh-fen Juan
Publisher: World Scientific
ISBN: 9813229160
Category : Medical
Languages : en
Pages : 153
Book Description
Systems biology combines computational and experimental approaches to analyze complex biological systems and focuses on understanding functional activities from a systems-wide perspective. It provides an iterative process of experimental measurements, data analysis, and computational simulation to model biological behavior. This book provides explained protocols for high-throughput experiments and computational analysis procedures central to cancer systems biology research and education. Readers will learn how to generate and analyze high-throughput data, therapeutic target protein structure modeling and docking simulation for drug discovery. This is the first practical guide for students and scientists who wish to become systems biologists or utilize the approach for cancer research.
Publisher: World Scientific
ISBN: 9813229160
Category : Medical
Languages : en
Pages : 153
Book Description
Systems biology combines computational and experimental approaches to analyze complex biological systems and focuses on understanding functional activities from a systems-wide perspective. It provides an iterative process of experimental measurements, data analysis, and computational simulation to model biological behavior. This book provides explained protocols for high-throughput experiments and computational analysis procedures central to cancer systems biology research and education. Readers will learn how to generate and analyze high-throughput data, therapeutic target protein structure modeling and docking simulation for drug discovery. This is the first practical guide for students and scientists who wish to become systems biologists or utilize the approach for cancer research.
Algorithms in Structural Molecular Biology
Author: Bruce R. Donald
Publisher: MIT Press
ISBN: 0262548798
Category : Science
Languages : en
Pages : 497
Book Description
An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.
Publisher: MIT Press
ISBN: 0262548798
Category : Science
Languages : en
Pages : 497
Book Description
An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.
A First Course in Systems Biology
Author: Eberhard Voit
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 480
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 480
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Molecular Biology of the Cell 6E - The Problems Book
Author: John Wilson
Publisher: Garland Science
ISBN: 1317497279
Category : Science
Languages : en
Pages : 984
Book Description
The Problems Book helps students appreciate the ways in which experiments and simple calculations can lead to an understanding of how cells work by introducing the experimental foundation of cell and molecular biology. Each chapter reviews key terms, tests for understanding basic concepts, and poses research-based problems. The Problems Book has be
Publisher: Garland Science
ISBN: 1317497279
Category : Science
Languages : en
Pages : 984
Book Description
The Problems Book helps students appreciate the ways in which experiments and simple calculations can lead to an understanding of how cells work by introducing the experimental foundation of cell and molecular biology. Each chapter reviews key terms, tests for understanding basic concepts, and poses research-based problems. The Problems Book has be
Mathematical Concepts and Methods in Modern Biology
Author: Raina Robeva
Publisher: Academic Press
ISBN: 0124157939
Category : Mathematics
Languages : en
Pages : 373
Book Description
Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology
Publisher: Academic Press
ISBN: 0124157939
Category : Mathematics
Languages : en
Pages : 373
Book Description
Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology
Foundations of Theoretical Approaches in Systems Biology
Author: Alberto Marin-Sanguino
Publisher: Frontiers Media SA
ISBN: 2889456838
Category :
Languages : en
Pages : 216
Book Description
If biology in the 20th century was characterized by an explosion of new technologies and experimental methods, that of the 21st has seen an equally exuberant proliferation of mathematical and computational methods that attempt to systematize and explain the abundance of available data. As we live through the consolidation of a new paradigm where experimental data goes hand in hand with computational analysis, we contemplate the challenge of fusing these two aspects of the new biology into a consistent theoretical framework. Whether systems biology will survive as a field or be washed away by the tides of future fads will ultimately depend on its success to achieve this type of synthesis. The famous quote attributed to Kurt Lewin comes to mind: "there is nothing more practical than a good theory". This book presents a wide assortment of articles on systems biology in an attempt to capture the variety of current methods in systems biology and show how they can help to find answers to the challenges of modern biology.
Publisher: Frontiers Media SA
ISBN: 2889456838
Category :
Languages : en
Pages : 216
Book Description
If biology in the 20th century was characterized by an explosion of new technologies and experimental methods, that of the 21st has seen an equally exuberant proliferation of mathematical and computational methods that attempt to systematize and explain the abundance of available data. As we live through the consolidation of a new paradigm where experimental data goes hand in hand with computational analysis, we contemplate the challenge of fusing these two aspects of the new biology into a consistent theoretical framework. Whether systems biology will survive as a field or be washed away by the tides of future fads will ultimately depend on its success to achieve this type of synthesis. The famous quote attributed to Kurt Lewin comes to mind: "there is nothing more practical than a good theory". This book presents a wide assortment of articles on systems biology in an attempt to capture the variety of current methods in systems biology and show how they can help to find answers to the challenges of modern biology.