A Beginner’s Guide to Streamlit for Data Science

A Beginner’s Guide to Streamlit for Data Science PDF Author: Partha Mishra
Publisher: Partha Mishra
ISBN:
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
This guide is for anyone interested in learning about Streamlit I believe in learning the subject hands-on, so all the topics discussed will be immediately followed by examples, which allow you to understand the expected output. I assume that you have a beginner-level knowledge of Python and have it installed in your system. I have designed the book so that each chapter corresponds to a specific concept so that even an absolute beginners can follow. By the end of the book, you will have a proper understanding of how to create dynamic applications which are frequently used in the data science industry and confidently use the new skill in your day-to-day coding activities. Topics Covered: Chapter 1: Introduction to Streamlit Chapter 2: Installing and Setting Up Streamlit Chapter 3: Coding our first application in Streamlit Chapter 4: Displaying Text in Streamlit Chapter 5: Displaying Data in Streamlit Chapter 6: Displaying Plots in Streamlit Chapter 7: Accepting User Inputs in Streamlit Applications Chapter 8: Displaying Media in Streamlit Chapter 9: Arranging the Layout in Streamlit Chapter 10: Displaying Status Animations in Streamlit

A Beginner’s Guide to Streamlit for Data Science

A Beginner’s Guide to Streamlit for Data Science PDF Author: Partha Mishra
Publisher: Partha Mishra
ISBN:
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
This guide is for anyone interested in learning about Streamlit I believe in learning the subject hands-on, so all the topics discussed will be immediately followed by examples, which allow you to understand the expected output. I assume that you have a beginner-level knowledge of Python and have it installed in your system. I have designed the book so that each chapter corresponds to a specific concept so that even an absolute beginners can follow. By the end of the book, you will have a proper understanding of how to create dynamic applications which are frequently used in the data science industry and confidently use the new skill in your day-to-day coding activities. Topics Covered: Chapter 1: Introduction to Streamlit Chapter 2: Installing and Setting Up Streamlit Chapter 3: Coding our first application in Streamlit Chapter 4: Displaying Text in Streamlit Chapter 5: Displaying Data in Streamlit Chapter 6: Displaying Plots in Streamlit Chapter 7: Accepting User Inputs in Streamlit Applications Chapter 8: Displaying Media in Streamlit Chapter 9: Arranging the Layout in Streamlit Chapter 10: Displaying Status Animations in Streamlit

Getting Started with Streamlit for Data Science

Getting Started with Streamlit for Data Science PDF Author: Tyler Richards
Publisher: Packt Publishing Ltd
ISBN: 1800563205
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit Key Features Learn how to showcase machine learning models in a Streamlit application effectively and efficiently Become an expert Streamlit creator by getting hands-on with complex application creation Discover how Streamlit enables you to create and deploy apps effortlessly Book DescriptionStreamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.What you will learn Set up your first development environment and create a basic Streamlit app from scratch Explore methods for uploading, downloading, and manipulating data in Streamlit apps Create dynamic visualizations in Streamlit using built-in and imported Python libraries Discover strategies for creating and deploying machine learning models in Streamlit Use Streamlit sharing for one-click deployment Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar Implement best practices for prototyping your data science work with Streamlit Who this book is for This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you’re a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.

Beginner's Guide to Streamlit with Python

Beginner's Guide to Streamlit with Python PDF Author: Sujay Raghavendra
Publisher:
ISBN: 9781484289846
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book will teach you the basics of Streamlit, a Python-based application framework used to build interactive dashboards and machine learning web apps. Streamlit reduces development time for web-based application prototypes of data and machine learning models. As you'll see, Streamlit helps develop data-enhanced analytics, build dynamic user experiences, and showcases data for data science and machine learning models. Beginner's Guide to Streamlit with Python begins with the basics of Streamlit by demonstrating how to build a basic application and advances to visualization techniques and their features. Next, it covers the various aspects of a typical Streamlit web application, and explains how to manage flow control and status elements. You'll also explore performance optimization techniques necessary for data modules in a Streamlit application. Following this, you'll see how to deploy Streamlit applications on various platforms. The book concludes with a few prototype natural language processing apps with computer vision implemented using Streamlit. After reading this book, you will understand the concepts, functionalities, and performance of Streamlit, and be able to develop dynamic Streamlit web-based data and machine learning applications of your own. You will: Start developing web applications using Streamlit Understand Streamlit's components Utilize media elements in Streamlit Visualize data using various interactive and dynamic Python libraries Implement models in Streamlit web applications.

Deep Learning

Deep Learning PDF Author: Dulani Meedeniya
Publisher: CRC Press
ISBN: 1000924068
Category : Computers
Languages : en
Pages : 195

Get Book Here

Book Description
This book focuses on deep learning (DL), which is an important aspect of data science, that includes predictive modeling. DL applications are widely used in domains such as finance, transport, healthcare, automanufacturing, and advertising. The design of the DL models based on artificial neural networks is influenced by the structure and operation of the brain. This book presents a comprehensive resource for those who seek a solid grasp of the techniques in DL. Key features: • Provides knowledge on theory and design of state-of-the-art deep learning models for real-world applications. • Explains the concepts and terminology in problem-solving with deep learning. • Explores the theoretical basis for major algorithms and approaches in deep learning. • Discusses the enhancement techniques of deep learning models. • Identifies the performance evaluation techniques for deep learning models. Accordingly, the book covers the entire process flow of deep learning by providing awareness of each of the widely used models. This book can be used as a beginners’ guide where the user can understand the associated concepts and techniques. This book will be a useful resource for undergraduate and postgraduate students, engineers, and researchers, who are starting to learn the subject of deep learning.

Getting Started with Data Science

Getting Started with Data Science PDF Author: Murtaza Haider
Publisher: IBM Press
ISBN: 0133991237
Category : Business & Economics
Languages : en
Pages : 942

Get Book Here

Book Description
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.

Approaching (Almost) Any Machine Learning Problem

Approaching (Almost) Any Machine Learning Problem PDF Author: Abhishek Thakur
Publisher: Abhishek Thakur
ISBN: 8269211508
Category : Computers
Languages : en
Pages : 300

Get Book Here

Book Description
This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub

Java Testing with Selenium

Java Testing with Selenium PDF Author: Sujay Raghavendra
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description


Learning Data Mining with Python

Learning Data Mining with Python PDF Author: Robert Layton
Publisher: Packt Publishing Ltd
ISBN: 1784391204
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Text Analysis in Python for Social Scientists

Text Analysis in Python for Social Scientists PDF Author: Dirk Hovy
Publisher: Cambridge University Press
ISBN: 110888301X
Category : Political Science
Languages : en
Pages : 104

Get Book Here

Book Description
Text is everywhere, and it is a fantastic resource for social scientists. However, because it is so abundant, and because language is so variable, it is often difficult to extract the information we want. There is a whole subfield of AI concerned with text analysis (natural language processing). Many of the basic analysis methods developed are now readily available as Python implementations. This Element will teach you when to use which method, the mathematical background of how it works, and the Python code to implement it.