Author: Raymond M. Smullyan
Publisher: Courier Corporation
ISBN: 0486782972
Category : Mathematics
Languages : en
Pages : 292
Book Description
Combining stories of great writers and philosophers with quotations and riddles, this original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2014 edition.
A Beginner's Guide to Mathematical Logic
Author: Raymond M. Smullyan
Publisher: Courier Corporation
ISBN: 0486782972
Category : Mathematics
Languages : en
Pages : 292
Book Description
Combining stories of great writers and philosophers with quotations and riddles, this original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2014 edition.
Publisher: Courier Corporation
ISBN: 0486782972
Category : Mathematics
Languages : en
Pages : 292
Book Description
Combining stories of great writers and philosophers with quotations and riddles, this original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2014 edition.
An Introduction to Mathematical Logic
Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
A Beginner’s Guide to Discrete Mathematics
Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 1475738269
Category : Mathematics
Languages : en
Pages : 376
Book Description
This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.
Publisher: Springer Science & Business Media
ISBN: 1475738269
Category : Mathematics
Languages : en
Pages : 376
Book Description
This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.
Introduction to Logic
Author: Alfred Tarski
Publisher: Courier Corporation
ISBN: 0486318893
Category : Mathematics
Languages : en
Pages : 271
Book Description
This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.
Publisher: Courier Corporation
ISBN: 0486318893
Category : Mathematics
Languages : en
Pages : 271
Book Description
This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.
Mathematical Logic
Author: George Tourlakis
Publisher: John Wiley & Sons
ISBN: 1118030699
Category : Mathematics
Languages : en
Pages : 314
Book Description
A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
Publisher: John Wiley & Sons
ISBN: 1118030699
Category : Mathematics
Languages : en
Pages : 314
Book Description
A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
Sweet Reason
Author: James M. Henle
Publisher: John Wiley & Sons
ISBN: 1118078683
Category : Philosophy
Languages : en
Pages : 436
Book Description
Sweet Reason: A Field Guide to Modern Logic, 2nd Edition offers an innovative, friendly, and effective introduction to logic. It integrates formal first order, modal, and non-classical logic with natural language reasoning, analytical writing, critical thinking, set theory, and the philosophy of logic and mathematics. An innovative introduction to the field of logic designed to entertain as it informs Integrates formal first order, modal, and non-classical logic with natural language reasoning, analytical writing, critical thinking, set theory, and the philosophy of logic and mathematics Addresses contemporary applications of logic in fields such as computer science and linguistics A web-site (www.wiley.com/go/henle) linked to the text features numerous supplemental exercises and examples, enlightening puzzles and cartoons, and insightful essays
Publisher: John Wiley & Sons
ISBN: 1118078683
Category : Philosophy
Languages : en
Pages : 436
Book Description
Sweet Reason: A Field Guide to Modern Logic, 2nd Edition offers an innovative, friendly, and effective introduction to logic. It integrates formal first order, modal, and non-classical logic with natural language reasoning, analytical writing, critical thinking, set theory, and the philosophy of logic and mathematics. An innovative introduction to the field of logic designed to entertain as it informs Integrates formal first order, modal, and non-classical logic with natural language reasoning, analytical writing, critical thinking, set theory, and the philosophy of logic and mathematics Addresses contemporary applications of logic in fields such as computer science and linguistics A web-site (www.wiley.com/go/henle) linked to the text features numerous supplemental exercises and examples, enlightening puzzles and cartoons, and insightful essays
A Course in Mathematical Logic for Mathematicians
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
A Beginner's Guide to Constructing the Universe
Author: Michael S. Schneider
Publisher: Harper Collins
ISBN: 0062043161
Category : Science
Languages : en
Pages : 523
Book Description
Discover how mathematical sequences abound in our natural world in this definitive exploration of the geography of the cosmos You need not be a philosopher or a botanist, and certainly not a mathematician, to enjoy the bounty of the world around us. But is there some sort of order, a pattern, to the things that we see in the sky, on the ground, at the beach? In A Beginner's Guide to Constructing the Universe, Michael Schneider, an education writer and computer consultant, combines science, philosophy, art, and common sense to reaffirm what the ancients observed: that a consistent language of geometric design underpins every level of the universe, from atoms to galaxies, cucumbers to cathedrals. Schneider also discusses numerical and geometric symbolism through the ages, and concepts such as periodic renewal and resonance. This book is an education in the world and everything we can't see within it. Contains numerous b&w photos and illustrations.
Publisher: Harper Collins
ISBN: 0062043161
Category : Science
Languages : en
Pages : 523
Book Description
Discover how mathematical sequences abound in our natural world in this definitive exploration of the geography of the cosmos You need not be a philosopher or a botanist, and certainly not a mathematician, to enjoy the bounty of the world around us. But is there some sort of order, a pattern, to the things that we see in the sky, on the ground, at the beach? In A Beginner's Guide to Constructing the Universe, Michael Schneider, an education writer and computer consultant, combines science, philosophy, art, and common sense to reaffirm what the ancients observed: that a consistent language of geometric design underpins every level of the universe, from atoms to galaxies, cucumbers to cathedrals. Schneider also discusses numerical and geometric symbolism through the ages, and concepts such as periodic renewal and resonance. This book is an education in the world and everything we can't see within it. Contains numerous b&w photos and illustrations.
A Beginner’s Guide to Finite Mathematics
Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 1475738145
Category : Mathematics
Languages : en
Pages : 363
Book Description
This concisely written text in finite mathematics gives a sequential, distinctly applied presentation of topics, employing a pedagogical approach that is ideal for freshmen and sophomores in business, the social sciences, and the liberal arts. The work opens with a brief review of sets and numbers, followed by an introduction to data sets, counting arguments, and the Binomial Theorem, which sets the foundation for elementary probability theory and some basic statistics. Further chapters treat graph theory as it relates to modelling, matrices and vectors, and linear programming. Requiring only two years of high school algebra, this book's many examples and illuminating problem sets - with selected solutions - will appeal to a wide audience of students and teachers.
Publisher: Springer Science & Business Media
ISBN: 1475738145
Category : Mathematics
Languages : en
Pages : 363
Book Description
This concisely written text in finite mathematics gives a sequential, distinctly applied presentation of topics, employing a pedagogical approach that is ideal for freshmen and sophomores in business, the social sciences, and the liberal arts. The work opens with a brief review of sets and numbers, followed by an introduction to data sets, counting arguments, and the Binomial Theorem, which sets the foundation for elementary probability theory and some basic statistics. Further chapters treat graph theory as it relates to modelling, matrices and vectors, and linear programming. Requiring only two years of high school algebra, this book's many examples and illuminating problem sets - with selected solutions - will appeal to a wide audience of students and teachers.
Forall X
Author: P. D. Magnus
Publisher:
ISBN:
Category : Logic
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Logic
Languages : en
Pages : 0
Book Description