Nanostructured Zinc Oxide

Nanostructured Zinc Oxide PDF Author: Kamlendra Awasthi
Publisher: Elsevier
ISBN: 0128189010
Category : Technology & Engineering
Languages : en
Pages : 781

Get Book Here

Book Description
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors

Zinc Oxide Based Nano Materials and Devices

Zinc Oxide Based Nano Materials and Devices PDF Author: , Prof. Dr. Ahmed Nahhas
Publisher: BoD – Books on Demand
ISBN: 1789239575
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.

Zinc Oxide Nanostructures

Zinc Oxide Nanostructures PDF Author: Magnus Willander
Publisher: CRC Press
ISBN: 9814411345
Category : Science
Languages : en
Pages : 225

Get Book Here

Book Description
Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under

Zinc Oxide Nanorods

Zinc Oxide Nanorods PDF Author: Kai-Hang Tam
Publisher:
ISBN: 9781374667136
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Zinc Oxide Nanorods: Hydrothermal Growth, Properties and Applications" by Kai-hang, Tam, 譚啟鏗, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled ZINC OXIDE NANORODS: HYDROTHERMAL GROWTH, PROPERTIES AND APPLICATIONS Submitted by Tam Kai Hang for the degree of Master of Philosophy at The University of Hong Kong in December 2007 One-dimensional wide band-gap semiconductor nanostructures, such as nanorods, nanowires and nanobelts, have recently attracted much attention for their potential use as fundamental building blocks for new generation of electronic and photonic devices. Various semiconducting 1-D nanostructures have been synthesized, such as TiO, SnO, 2 2 GaN, GaAs, Si and ZnO. Among these nanostructures, zinc oxide (ZnO) has became particularly intersting in optoelectronic, field emission, gas sensing and biomedicine applications. ZnO is a wide band-gap (3.37 eV) semiconductor with high excitonic binding energy ( 60 meV), and it is non-toxic and environmentally friendly. Hydrothermal growth of ZnO provides an inexpensive method to fabricate large amounts of ZnO nanorods or nanowires on various substrates. However, the controversies still remain about the native defects in ZnO. In this work, ZnO nanorod arrays were fabricated by a hydrothermal method. The structural properties were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). Well-oriented nanorods, which exhibited strong defect-related photoluminescence (PL) were obtained. Stimulated UV emission was achieved in forming gas or oxygen annealed nanorods. Change in lasing threshold and defect emission, as well as spontaneous decay time, indicated that yellow defect emission was not caused by interstitial oxygen, which was commonly assumed to be dominant in the yellow emitted ZnO. The origins of defects emissions were investigated by x-ray photoelectron spectroscopy (XPS) and positron annihilation spectroscopy (PAS). The results showed that yellow emission of the as-grown nanorods originated from the presence of Zn(OH) on surface, while the green emission which appeared after annealing was due to the defect complex related to zinc vacancy. On the other hand, it was also observed that green emission originated from grain boundary in other ZnO nanostructures, such as nanoshells. The origin of the green emission has not yet been determined, but there was evidence that the emission was surface-related. Heterojunction of n-ZnO nanorod arrays / p-GaN film light-emitting-diodes (LEDs) were fabricated. Influence of annealing conditions on the performance of devices was examined. It was found that the position of recombination zone was shifted after annealing in some cases. Emission wavelength could be controlled through annealing processes. This study could help improve the performance of these heterojunction devices. In order to have more comprehensive studies on applications of these versatile ZnO nanorods, antibacterial properties of the nanorods were investigated. ZnO nanorods coating have exhibited great antibacterial activity. Other ZnO morphologies (nanoparticles and powder) were also studies for comparison. Mechanisms of ZnO against different bacteria were investigated. It was found that damaging of E. coli cell was partly due to the relaxation of hydrogen peroxide (H O ) from the structures. 2 2 DOI: 10.5353/th_b3955734 Subjects: Zinc oxide Nanostructures Nanotechnology

Zinc Oxide Nanorods

Zinc Oxide Nanorods PDF Author: Hope Wuming Chik
Publisher:
ISBN:
Category : Nanostructures
Languages : en
Pages : 338

Get Book Here

Book Description


Gas Sensors

Gas Sensors PDF Author: Sher Bahadar Khan
Publisher: BoD – Books on Demand
ISBN: 1789851599
Category : Technology & Engineering
Languages : en
Pages : 170

Get Book Here

Book Description
This book focuses on the applications of nanomaterials in the fabrication of gas sensors. It covers recent developments of different materials used to design gas sensors, such as conducting polymers, semiconductors, as well as layered and nanosized materials. The widespread applications of various gas sensors for the detection of toxic gases are also discussed. The book provides a concise but thorough coverage of nanomaterials applications and utilization in gas sensors. In addition, it overviews recent developments in and the fabrication of gas sensors and their attributes for a broad audience, including beginners, graduate students, and specialists in both academic and industrial sectors.

ZnO Nanocrystals and Allied Materials

ZnO Nanocrystals and Allied Materials PDF Author: M S Ramachandra Rao
Publisher: Springer Science & Business Media
ISBN: 813221160X
Category : Science
Languages : en
Pages : 377

Get Book Here

Book Description
ZnO has been the central theme of research in the past decade due to its various applications in band gap engineering, and textile and biomedical industries. In nanostructured form, it offers ample opportunities to realize tunable optical and optoelectronic properties and it was also termed as a potential material to realize room temperature ferromagnetism. This book presents 17 high-quality contributory chapters on ZnO related systems written by experts in this field. These chapters will help researchers to understand and explore the varied physical properties to envisage device applications of ZnO in thin film, heterostructure and nanostructure forms.

Handbook of Zinc Oxide and Related Materials

Handbook of Zinc Oxide and Related Materials PDF Author: Zhe Chuan Feng
Publisher: CRC Press
ISBN: 1439855749
Category : Technology & Engineering
Languages : en
Pages : 565

Get Book Here

Book Description
Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering and materials science, Handbook of Zinc Oxide and Related Materials provides a comprehensive, up-to-date review of various technological aspects of ZnO. Volume Two focuses on devices and nanostructures created from ZnO and similar materials. The book covers various nanostructures, synthesis/creation strategies, device behavior, and state-of-the-art applications in electronics and optoelectronics. It also provides useful information on the device and nanoscale process and examines the fabrication of LEDs, LDs, photodetectors, and nanodevices. Covering key properties and important technologies of ZnO-based devices and nanoengineering, the handbook highlights the potential of this wide gap semiconductor. It also illustrates the remaining challenging issues in nanomaterial preparation and device fabrication for R&D in the twenty-first century.

Zinc Oxide

Zinc Oxide PDF Author: Hadis Morkoç
Publisher: John Wiley & Sons
ISBN: 3527623957
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description
This first systematic, authoritative and thorough treatment in one comprehensive volume presents the fundamentals and technologies of the topic, elucidating all aspects of ZnO materials and devices. Following an introduction, the authors look at the general properties of ZnO, as well as its growth, optical processes, doping and ZnO-based dilute magnetic semiconductors. Concluding sections treat bandgap engineering, processing and ZnO nanostructures and nanodevices. Of interest to device engineers, physicists, and semiconductor and solid state scientists in general.

Toward the Optimization of Low-temperature Solution-based Synthesis of ZnO Nanostructures for Device Applications

Toward the Optimization of Low-temperature Solution-based Synthesis of ZnO Nanostructures for Device Applications PDF Author: Hatim Alnoor
Publisher: Linköping University Electronic Press
ISBN: 9176854817
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
One-dimensional (1D) nanostructures (NSs) of Zinc Oxide (ZnO) such as nanorods (NRs) have recently attracted considerable research attention due to their potential for the development of optoelectronic devices such as ultraviolet (UV) photodetectors and light-emitting diodes (LEDs). The potential of ZnO NRs in all these applications, however, would require synthesis of high crystal quality ZnO NRs with precise control over the optical and electronic properties. It is known that the optical and electronic properties of ZnO NRs are mostly influenced by the presence of native (intrinsic) and impurities (extrinsic) defects. Therefore, understanding the nature of these intrinsic and extrinsic defects and their spatial distribution is critical for optimizing the optical and electronic properties of ZnO NRs. However, identifying the origin of such defects is a complicated matter, especially for NSs, where the information on anisotropy is usually lost due to the lack of coherent orientation. Thus, the aim of this thesis is towards the optimization of the lowtemperature solution-based synthesis of ZnO NRs for device applications. In this connection, we first started with investigating the effect of the precursor solution stirring durations on the deep level defects concentration and their spatial distribution along the ZnO NRs. Then, by choosing the optimal stirring time, we studied the influence of ZnO seeding layer precursor’s types, and its molar ratios on the density of interface defects. The findings of these investigations were used to demonstrate ZnO NRs-based heterojunction LEDs. The ability to tune the point defects along the NRs enabled us further to incorporate cobalt (Co) ions into the ZnO NRs crystal lattice, where these ions could occupy the vacancies or interstitial defects through substitutional or interstitial doping. Following this, high crystal quality vertically welloriented ZnO NRs have been demonstrated by incorporating a small amount of Co into the ZnO crystal lattice. Finally, the influence of Co ions incorporation on the reduction of core-defects (CDs) in ZnO NRs was systematically examined using electron paramagnetic resonance (EPR).