Zeta Functions for Two-Dimensional Shifts of Finite Type

Zeta Functions for Two-Dimensional Shifts of Finite Type PDF Author: Jung-Chao Ban
Publisher: American Mathematical Soc.
ISBN: 0821872907
Category : Mathematics
Languages : en
Pages : 72

Get Book Here

Book Description
This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $\zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $\mathbb{Z}^{2}$-action $\phi$. In this paper, the $n$th-order zeta function $\zeta_{n}$ of $\phi$ on $\mathbb{Z}_{n\times \infty}$, $n\geq 1$, is studied first. The trace operator $\mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $\mathbf{T}_{n}$ induces the reduced trace operator $\tau_{n}$ and $\zeta_{n}=\left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$. The zeta function $\zeta=\prod_{n=1}^{\infty} \left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(\mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $\zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

Zeta Functions for Two-Dimensional Shifts of Finite Type

Zeta Functions for Two-Dimensional Shifts of Finite Type PDF Author: Jung-Chao Ban
Publisher: American Mathematical Soc.
ISBN: 0821872907
Category : Mathematics
Languages : en
Pages : 72

Get Book Here

Book Description
This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $\zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $\mathbb{Z}^{2}$-action $\phi$. In this paper, the $n$th-order zeta function $\zeta_{n}$ of $\phi$ on $\mathbb{Z}_{n\times \infty}$, $n\geq 1$, is studied first. The trace operator $\mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $\mathbf{T}_{n}$ induces the reduced trace operator $\tau_{n}$ and $\zeta_{n}=\left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$. The zeta function $\zeta=\prod_{n=1}^{\infty} \left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(\mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $\zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

An Introduction to Symbolic Dynamics and Coding

An Introduction to Symbolic Dynamics and Coding PDF Author: Douglas A. Lind
Publisher: Cambridge University Press
ISBN: 110882028X
Category : Language Arts & Disciplines
Languages : en
Pages : 571

Get Book Here

Book Description
Elementary introduction to symbolic dynamics, updated to describe the main advances in the subject since the original publication in 1995.

Gromov, Cauchy and Causal Boundaries for Riemannian, Finslerian and Lorentzian Manifolds

Gromov, Cauchy and Causal Boundaries for Riemannian, Finslerian and Lorentzian Manifolds PDF Author: Jose Luis Flores
Publisher: American Mathematical Soc.
ISBN: 0821887750
Category : Mathematics
Languages : en
Pages : 88

Get Book Here

Book Description
Recently, the old notion of causal boundary for a spacetime V has been redefined consistently. The computation of this boundary ∂V on any standard conformally stationary spacetime V=R×M, suggests a natural compactification MB associated to any Riemannian metric on M or, more generally, to any Finslerian one. The corresponding boundary ∂BM is constructed in terms of Busemann-type functions. Roughly, ∂BM represents the set of all the directions in M including both, asymptotic and "finite" (or "incomplete") directions. This Busemann boundary ∂BM is related to two classical boundaries: the Cauchy boundary ∂CM and the Gromov boundary ∂GM. The authors' aims are: (1) to study the subtleties of both, the Cauchy boundary for any generalized (possibly non-symmetric) distance and the Gromov compactification for any (possibly incomplete) Finsler manifold, (2) to introduce the new Busemann compactification MB, relating it with the previous two completions, and (3) to give a full description of the causal boundary ∂V of any standard conformally stationary spacetime. J. L. Flores and J. Herrera, University of Malaga, Spain, and M. Sánchez, University of Granada, Spain. Publisher's note.

Algebraic and Topological Dynamics

Algebraic and Topological Dynamics PDF Author: S. F. Koli︠a︡da
Publisher: American Mathematical Soc.
ISBN: 0821837516
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
This volume contains a collection of articles from the special program on algebraic and topological dynamics and a workshop on dynamical systems held at the Max-Planck Institute (Bonn, Germany). It reflects the extraordinary vitality of dynamical systems in its interaction with a broad range of mathematical subjects. Topics covered in the book include asymptotic geometric analysis, transformation groups, arithmetic dynamics, complex dynamics, symbolic dynamics, statisticalproperties of dynamical systems, and the theory of entropy and chaos. The book is suitable for graduate students and researchers interested in dynamical systems.

Modeling, Dynamics, Optimization and Bioeconomics I

Modeling, Dynamics, Optimization and Bioeconomics I PDF Author: Alberto Adrego Pinto
Publisher: Springer
ISBN: 331904849X
Category : Mathematics
Languages : en
Pages : 749

Get Book Here

Book Description
This volume explores the emerging and current, cutting-edge theories and methods of modeling, optimization, dynamics and bio economy. It provides an overview of the main issues, results and open questions in these fields as well as covers applications to biology, economy, energy, industry, physics, psychology and finance. The majority of the contributed papers for this volume come from the participants of the International Conference on Modeling, Optimization and Dynamics (ICMOD 2010), a satellite conference of EURO XXIV Lisbon 2010, which took place at Faculty of Sciences of University of Porto, Portugal and from the Berkeley Bio economy Conference 2012, at the University of California, Berkeley, USA.

Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval

Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval PDF Author: David Ruelle
Publisher: American Mathematical Soc.
ISBN: 9780821836019
Category : Mathematics
Languages : en
Pages : 76

Get Book Here

Book Description
With a general introduction to the subject, this title presents a detailed study of the zeta functions associated with piecewise monotone maps of the interval $ 0,1]$. In particular, it gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator.

On the Regularity of the Composition of Diffeomorphisms

On the Regularity of the Composition of Diffeomorphisms PDF Author: H. Inci
Publisher: American Mathematical Soc.
ISBN: 0821887416
Category : Mathematics
Languages : en
Pages : 72

Get Book Here

Book Description
For M a closed manifold or the Euclidean space Rn we present a detailed proof of regularity properties of the composition of Hs-regular diffeomorphisms of M for s > 12dim⁡M+1.

Fractal Zeta Functions and Fractal Drums

Fractal Zeta Functions and Fractal Drums PDF Author: Michel L. Lapidus
Publisher: Springer
ISBN: 3319447068
Category : Mathematics
Languages : en
Pages : 685

Get Book Here

Book Description
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.

The Reductive Subgroups of $F_4$

The Reductive Subgroups of $F_4$ PDF Author: David I. Stewart
Publisher: American Mathematical Soc.
ISBN: 0821883321
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
Let $G=G(K)$ be a simple algebraic group defined over an algebraically closed field $K$ of characteristic $p\geq 0$. A subgroup $X$ of $G$ is said to be $G$-completely reducible if, whenever it is contained in a parabolic subgroup of $G$, it is contained in a Levi subgroup of that parabolic. A subgroup $X$ of $G$ is said to be $G$-irreducible if $X$ is in no proper parabolic subgroup of $G$; and $G$-reducible if it is in some proper parabolic of $G$. In this paper, the author considers the case that $G=F_4(K)$. The author finds all conjugacy classes of closed, connected, semisimple $G$-reducible subgroups $X$ of $G$. Thus he also finds all non-$G$-completely reducible closed, connected, semisimple subgroups of $G$. When $X$ is closed, connected and simple of rank at least two, he finds all conjugacy classes of $G$-irreducible subgroups $X$ of $G$. Together with the work of Amende classifying irreducible subgroups of type $A_1$ this gives a complete classification of the simple subgroups of $G$. The author also uses this classification to find all subgroups of $G=F_4$ which are generated by short root elements of $G$, by utilising and extending the results of Liebeck and Seitz.

The Topology of Chaos

The Topology of Chaos PDF Author: Robert Gilmore
Publisher: John Wiley & Sons
ISBN: 3527617329
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
A new approach to understanding nonlinear dynamics and strange attractors The behavior of a physical system may appear irregular or chaotic even when it is completely deterministic and predictable for short periods of time into the future. How does one model the dynamics of a system operating in a chaotic regime? Older tools such as estimates of the spectrum of Lyapunov exponents and estimates of the spectrum of fractal dimensions do not sufficiently answer this question. In a significant evolution of the field of Nonlinear Dynamics, The Topology of Chaos responds to the fundamental challenge of chaotic systems by introducing a new analysis method-Topological Analysis-which can be used to extract, from chaotic data, the topological signatures that determine the stretching and squeezing mechanisms which act on flows in phase space and are responsible for generating chaotic data. Beginning with an example of a laser that has been operated under conditions in which it behaved chaotically, the authors convey the methodology of Topological Analysis through detailed chapters on: * Discrete Dynamical Systems: Maps * Continuous Dynamical Systems: Flows * Topological Invariants * Branched Manifolds * The Topological Analysis Program * Fold Mechanisms * Tearing Mechanisms * Unfoldings * Symmetry * Flows in Higher Dimensions * A Program for Dynamical Systems Theory Suitable at the present time for analyzing "strange attractors" that can be embedded in three-dimensional spaces, this groundbreaking approach offers researchers and practitioners in the discipline a complete and satisfying resolution to the fundamental questions of chaotic systems.