Author: William Fulton
Publisher: Cambridge University Press
ISBN: 9780521567244
Category : Mathematics
Languages : en
Pages : 276
Book Description
Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Young Tableaux
Author: William Fulton
Publisher: Cambridge University Press
ISBN: 9780521567244
Category : Mathematics
Languages : en
Pages : 276
Book Description
Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Publisher: Cambridge University Press
ISBN: 9780521567244
Category : Mathematics
Languages : en
Pages : 276
Book Description
Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Group Theory for Physicists
Author: Zhongqi Ma
Publisher: World Scientific
ISBN: 9812771417
Category : Science
Languages : en
Pages : 512
Book Description
This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.
Publisher: World Scientific
ISBN: 9812771417
Category : Science
Languages : en
Pages : 512
Book Description
This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.
Young Tableaux in Combinatorics, Invariant Theory, and Algebra
Author: Joseph P.S. Kung
Publisher: Elsevier
ISBN: 1483272028
Category : Mathematics
Languages : en
Pages : 344
Book Description
Young Tableaux in Combinatorics, Invariant Theory, and Algebra: An Anthology of Recent Work is an anthology of papers on Young tableaux and their applications in combinatorics, invariant theory, and algebra. Topics covered include reverse plane partitions and tableau hook numbers; some partitions associated with a partially ordered set; frames and Baxter sequences; and Young diagrams and ideals of Pfaffians. Comprised of 16 chapters, this book begins by describing a probabilistic proof of a formula for the number f? of standard Young tableaux of a given shape f?. The reader is then introduced to the generating function of R. P. Stanley for reverse plane partitions on a tableau shape; an analog of Schensted's algorithm relating permutations and triples consisting of two shifted Young tableaux and a set; and a variational problem for random Young tableaux. Subsequent chapters deal with certain aspects of Schensted's construction and the derivation of the Littlewood-Richardson rule for the multiplication of Schur functions using purely combinatorial methods; monotonicity and unimodality of the pattern inventory; and skew-symmetric invariant theory. This volume will be helpful to students and practitioners of algebra.
Publisher: Elsevier
ISBN: 1483272028
Category : Mathematics
Languages : en
Pages : 344
Book Description
Young Tableaux in Combinatorics, Invariant Theory, and Algebra: An Anthology of Recent Work is an anthology of papers on Young tableaux and their applications in combinatorics, invariant theory, and algebra. Topics covered include reverse plane partitions and tableau hook numbers; some partitions associated with a partially ordered set; frames and Baxter sequences; and Young diagrams and ideals of Pfaffians. Comprised of 16 chapters, this book begins by describing a probabilistic proof of a formula for the number f? of standard Young tableaux of a given shape f?. The reader is then introduced to the generating function of R. P. Stanley for reverse plane partitions on a tableau shape; an analog of Schensted's algorithm relating permutations and triples consisting of two shifted Young tableaux and a set; and a variational problem for random Young tableaux. Subsequent chapters deal with certain aspects of Schensted's construction and the derivation of the Littlewood-Richardson rule for the multiplication of Schur functions using purely combinatorial methods; monotonicity and unimodality of the pattern inventory; and skew-symmetric invariant theory. This volume will be helpful to students and practitioners of algebra.
Group Theory
Author: Predrag Cvitanović
Publisher: Princeton University Press
ISBN: 0691202982
Category : Mathematics
Languages : en
Pages : 278
Book Description
If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.
Publisher: Princeton University Press
ISBN: 0691202982
Category : Mathematics
Languages : en
Pages : 278
Book Description
If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.
Algebraic Structures and Operator Calculus
Author: P. Feinsilver
Publisher: Springer
ISBN: 0585280037
Category : Mathematics
Languages : en
Pages : 151
Book Description
In this volume we will present some applications of special functions in computer science. This largely consists of adaptations of articles that have appeared in the literature . Here they are presented in a format made accessible for the non-expert by providing some context. The material on group representations and Young tableaux is introductory in nature. However, the algebraic approach of Chapter 2 is original to the authors and has not appeared previously . Similarly, the material and approach based on Appell states, so formulated, is presented here for the first time . As in all volumes of this series, this one is suitable for self-study by researchers . It is as well appropriate as a text for a course or advanced seminar . The solutions are tackled with the help of various analytical techniques, such as g- erating functions, and probabilistic methods/insights appear regularly . An interesting feature is that, as has been the case in classical applications to physics, special functions arise- here in complexity analysis. And, as in physics, their appearance indicates an underlying Lie structure. Our primary audience is applied mathematicians and theoretical computer scientists . We are quite sure that pure mathematicians will find this volume interesting and useful as well .
Publisher: Springer
ISBN: 0585280037
Category : Mathematics
Languages : en
Pages : 151
Book Description
In this volume we will present some applications of special functions in computer science. This largely consists of adaptations of articles that have appeared in the literature . Here they are presented in a format made accessible for the non-expert by providing some context. The material on group representations and Young tableaux is introductory in nature. However, the algebraic approach of Chapter 2 is original to the authors and has not appeared previously . Similarly, the material and approach based on Appell states, so formulated, is presented here for the first time . As in all volumes of this series, this one is suitable for self-study by researchers . It is as well appropriate as a text for a course or advanced seminar . The solutions are tackled with the help of various analytical techniques, such as g- erating functions, and probabilistic methods/insights appear regularly . An interesting feature is that, as has been the case in classical applications to physics, special functions arise- here in complexity analysis. And, as in physics, their appearance indicates an underlying Lie structure. Our primary audience is applied mathematicians and theoretical computer scientists . We are quite sure that pure mathematicians will find this volume interesting and useful as well .
Groups, Representations and Physics
Author: H.F Jones
Publisher: CRC Press
ISBN: 9781420050295
Category : Mathematics
Languages : en
Pages : 348
Book Description
Illustrating the fascinating interplay between physics and mathematics, Groups, Representations and Physics, Second Edition provides a solid foundation in the theory of groups, particularly group representations. For this new, fully revised edition, the author has enhanced the book's usefulness and widened its appeal by adding a chapter on the Cartan-Dynkin treatment of Lie algebras. This treatment, a generalization of the method of raising and lowering operators used for the rotation group, leads to a systematic classification of Lie algebras and enables one to enumerate and construct their irreducible representations. Taking an approach that allows physics students to recognize the power and elegance of the abstract, axiomatic method, the book focuses on chapters that develop the formalism, followed by chapters that deal with the physical applications. It also illustrates formal mathematical definitions and proofs with numerous concrete examples.
Publisher: CRC Press
ISBN: 9781420050295
Category : Mathematics
Languages : en
Pages : 348
Book Description
Illustrating the fascinating interplay between physics and mathematics, Groups, Representations and Physics, Second Edition provides a solid foundation in the theory of groups, particularly group representations. For this new, fully revised edition, the author has enhanced the book's usefulness and widened its appeal by adding a chapter on the Cartan-Dynkin treatment of Lie algebras. This treatment, a generalization of the method of raising and lowering operators used for the rotation group, leads to a systematic classification of Lie algebras and enables one to enumerate and construct their irreducible representations. Taking an approach that allows physics students to recognize the power and elegance of the abstract, axiomatic method, the book focuses on chapters that develop the formalism, followed by chapters that deal with the physical applications. It also illustrates formal mathematical definitions and proofs with numerous concrete examples.
Enumerative Combinatorics of Young Tableaux
Author: Shreeram Shankar Abhyankar
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
Random Matrix Models and Their Applications
Author: Pavel Bleher
Publisher: Cambridge University Press
ISBN: 9780521802093
Category : Mathematics
Languages : en
Pages : 454
Book Description
Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.
Publisher: Cambridge University Press
ISBN: 9780521802093
Category : Mathematics
Languages : en
Pages : 454
Book Description
Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.
Symmetries, Lie Algebras and Representations
Author: Jürgen Fuchs
Publisher: Cambridge University Press
ISBN: 9780521541190
Category : Mathematics
Languages : en
Pages : 464
Book Description
This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.
Publisher: Cambridge University Press
ISBN: 9780521541190
Category : Mathematics
Languages : en
Pages : 464
Book Description
This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.
Computational Molecular Biology
Author: Pavel Pevzner
Publisher: MIT Press
ISBN: 9780262161978
Category : Computers
Languages : en
Pages : 336
Book Description
Computational gene hunting. Restriction mapping. Map assembly. Sequencing. DNA arrays. Sequence comparision. Multiple alignment. Finding signals in DNA. Gene prediction. Genome rearrangements. Computational proteomics. Problems .All you need to know about molecular biology. Bibliography. Index.
Publisher: MIT Press
ISBN: 9780262161978
Category : Computers
Languages : en
Pages : 336
Book Description
Computational gene hunting. Restriction mapping. Map assembly. Sequencing. DNA arrays. Sequence comparision. Multiple alignment. Finding signals in DNA. Gene prediction. Genome rearrangements. Computational proteomics. Problems .All you need to know about molecular biology. Bibliography. Index.