X-Ray Near-Field Holography: Beyond Idealized Assumptions of the Probe

X-Ray Near-Field Holography: Beyond Idealized Assumptions of the Probe PDF Author: Johannes Hagemann
Publisher: Göttingen University Press
ISBN: 3863953320
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
All images are flawed, no matter how good your lenses, mirrors etc. are. Especially in the hard X-ray regime it is challenging to manufacture high quality optics due to the weak interaction of multi-keV photons with matter. This is a tremendous challenge for obtaining high resolution quantitative X-ray microscopy images. In recent years lensless phase contrast imaging has become an alternative to classical absorptionbased imaging methods. Without any optics, the image is formed only by the free space propagation of the wave field. The actual image has to be formed posteriori by numerical reconstruction methods. Advanced phasing methods enable the experimentalist to recover a complex valued specimen from a single or a set of intensity measurement. This would be the ideal case - reality teaches us that there are no ideal imaging conditions. Describing, understanding and circumventing these non ideal imaging conditions and their effects on X-ray near-field holographic (NFH) imaging are the leitmotifs for this thesis. In NFH the non ideal conditions manifest themselves in the illuminating wave field or probe. The probe generally does not satisfy the canonical assumptions of fully coherent and monochromatic radiation emitted by a point source. The main results of this thesis are compiled as a collection of publications. An approach is shown to reconstruct the probe of a X-ray nano-focus setup by a series of measurements of the probe at varied Fresnel number. The following chapter presents a study concerning the reconstruction efficiency in terms of resolution for near- and far-field based lensless imaging. In the following, the reconstruction scheme for the probe is extended to incorporate the effects of partial coherence in the near field. This enables the recovery of the modal structure of the probe which yields a full description of its coherence properties. Giving up the assumption of temporal stability due to the stochastic pulses, delivered by X-ray free electron lasers, the reconstruction of probe and specimen must be achieved from a single shot. A suitable scheme for this purpose is proposed in this work.

X-Ray Near-Field Holography: Beyond Idealized Assumptions of the Probe

X-Ray Near-Field Holography: Beyond Idealized Assumptions of the Probe PDF Author: Johannes Hagemann
Publisher: Göttingen University Press
ISBN: 3863953320
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
All images are flawed, no matter how good your lenses, mirrors etc. are. Especially in the hard X-ray regime it is challenging to manufacture high quality optics due to the weak interaction of multi-keV photons with matter. This is a tremendous challenge for obtaining high resolution quantitative X-ray microscopy images. In recent years lensless phase contrast imaging has become an alternative to classical absorptionbased imaging methods. Without any optics, the image is formed only by the free space propagation of the wave field. The actual image has to be formed posteriori by numerical reconstruction methods. Advanced phasing methods enable the experimentalist to recover a complex valued specimen from a single or a set of intensity measurement. This would be the ideal case - reality teaches us that there are no ideal imaging conditions. Describing, understanding and circumventing these non ideal imaging conditions and their effects on X-ray near-field holographic (NFH) imaging are the leitmotifs for this thesis. In NFH the non ideal conditions manifest themselves in the illuminating wave field or probe. The probe generally does not satisfy the canonical assumptions of fully coherent and monochromatic radiation emitted by a point source. The main results of this thesis are compiled as a collection of publications. An approach is shown to reconstruct the probe of a X-ray nano-focus setup by a series of measurements of the probe at varied Fresnel number. The following chapter presents a study concerning the reconstruction efficiency in terms of resolution for near- and far-field based lensless imaging. In the following, the reconstruction scheme for the probe is extended to incorporate the effects of partial coherence in the near field. This enables the recovery of the modal structure of the probe which yields a full description of its coherence properties. Giving up the assumption of temporal stability due to the stochastic pulses, delivered by X-ray free electron lasers, the reconstruction of probe and specimen must be achieved from a single shot. A suitable scheme for this purpose is proposed in this work.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 644

Get Book Here

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Phase retrieval for object and probe in the optical near-field

Phase retrieval for object and probe in the optical near-field PDF Author: Anna-Lena Robisch
Publisher: Göttingen University Press
ISBN: 3863952529
Category :
Languages : en
Pages : 178

Get Book Here

Book Description
Lensless, holographic X-ray microscopy is a non-invasive imaging technique that provides resolution on the nanometer scale. Therefore, a divergent, coherent and especially clean wave front impinging on the sample is needed. Yet, focusing X-rays by even the most advanced X-ray mirrors causes so called figure errors of high spatial frequency content. The results are strongly deteriorated intensity profiles that are often even more pronounced than the holographic image of the sample itself. A common strategy to compensate these figure errors is to divide the hologram by the pure intensity profile of the beam (the so called flat field). However, this division is only valid in the limiting case of an illumination focused down to a point source. In reality, as a consequence of a fi nite spot size, one has to accept a loss in resolution when performing the flat field correction. An approach different from the described straightforward procedure is necessary. Here, the simultaneous reconstruction of object and probe is proposed using holograms which were not flat field corrected before phase retrieval. To this end, a method has been developed that allows simultaneously reconstructing object and probe in amplitude and phase from holographic intensity recordings. The experimental way of proceeding was mainly inspired by well-established holographic full-field X-ray imaging techniques that require holograms defocused to different degrees. Consequently, the conclusion seems reasonable that diversity in the optical near-field arises mainly from variation of the propagation distance of light. This so called longitudinal diversity is used to properly phase the transmission function of the sample of interest. The algorithmic strategy of simultaneous phase retrieval for object and probe draws on far-field ptychography where lateral translations of the sample create diverse diffraction patterns. In view of the need for longitudinal diversity realized by shifts of the sample along the optical axis, ptychography has been generalized and adapted for the optical near-field. Hence, translations of the sample in all three dimensions of space need to be exploited to collect enough information about object and probe such that both can be reconstructed simultaneously in amplitude and phase. Concepts have been put into practice by simulations as well as by experiments with coherent visible light and hard X-rays from synchrotron sources. The presented approach offers the opportunity to perform high resolution imaging, to be extended to tomography and to be adapted to super-resolution experiments.

Introduction to the AdS/CFT Correspondence

Introduction to the AdS/CFT Correspondence PDF Author: Horaƫiu Năstase
Publisher: Cambridge University Press
ISBN: 1316352307
Category : Science
Languages : en
Pages : 457

Get Book Here

Book Description
Providing a pedagogical introduction to the rapidly developing field of AdS/CFT correspondence, this is one of the first texts to provide an accessible introduction to all the necessary concepts needed to engage with the methods, tools and applications of AdS/CFT. Without assuming anything beyond an introductory course in quantum field theory, it begins by guiding the reader through the basic concepts of field theory and gauge theory, general relativity, supersymmetry, supergravity, string theory and conformal field theory, before moving on to give a clear and rigorous account of AdS/CFT correspondence. The final section discusses the more specialised applications, including QCD, quark-gluon plasma and condensed matter. This book is self-contained and learner-focused, featuring numerous exercises and examples. It is essential reading for both students and researchers across the fields of particle, nuclear and condensed matter physics.

Computational Photography

Computational Photography PDF Author: Ramesh Raskar
Publisher: A K Peters/CRC Press
ISBN: 9781568813134
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Computational Photography combines plentiful computing, digital sensors, modern optics, actuators, probes, and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. This book provides a practical guide to topics in image capture and manipulation methods for generating compelling pictures for graphics, special effects, scene comprehension, and art. The computational techniques discussed cover topics in exploiting new ideas in manipulating optics, illumination, and sensors at time of capture. In addition, the authors describe sophisticated reconstruction procedures from direct and indirect pixel measurements that go well beyond the traditional digital darkroom experience.

Low-Speed Wind Tunnel Testing

Low-Speed Wind Tunnel Testing PDF Author: Jewel B. Barlow
Publisher: John Wiley & Sons
ISBN: 0471557749
Category : Technology & Engineering
Languages : en
Pages : 738

Get Book Here

Book Description
A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.

Advances in X-Ray Analysis

Advances in X-Ray Analysis PDF Author: Charles Barrett
Publisher: Springer
ISBN: 9780306381140
Category : Science
Languages : en
Pages : 574

Get Book Here

Book Description
The application of solid-state detectors of high energy resolution to x-ray spectrometry, and the increasing use of compu ters in both measurement and data evaluation, are giving a new stimulus to x-ray techniques in analytical chemistry. The Twentieth Annual Denver X-ray Conference reflects this renewed interest in several ways. The invited papers, grouped in Session I, review the charac teristics of the detectors used in the measurement of x-rays. One paper is dedicated to the detection of single ions. Although such a subject may appear to be marginal to the purposes of the Denver Conference, we must recognize the affinity of techniques applied to similar purposes. Ion probe mass spectrometry is dedicated to tasks similar to those performed by x-ray spectrometry with the electron probe microanalyzer. Scientists and technologists will see these two techniques discussed in the same meetings. The discussion of automation and programming is not limited to the two invited speakers, but extends to papers presented in more than one session. The matter of fluorescence analysis by isotope- and tube-excitation will also be of great interest to those concerned with the practical applications of x-ray techniques. The communications contained in this volume, and the lively discussions which frequently followed the presentation of papers, attest to the vitality of the subjects which are the concern of the Annual Denver X-ray Conference.

Methods for Geochemical Analysis

Methods for Geochemical Analysis PDF Author: Philip A. Baedecker
Publisher:
ISBN:
Category : Analytical geochemistry
Languages : en
Pages : 192

Get Book Here

Book Description
Analytical methods used in the Geologic Division laboratories of the U.S. Geological Survey for the inorganic chemical analysis of rock and mineral samples.

Advanced x-ray multilayer waveguide optics

Advanced x-ray multilayer waveguide optics PDF Author: Qi Zhong
Publisher: Göttingen University Press
ISBN: 3863953258
Category :
Languages : en
Pages : 164

Get Book Here

Book Description
The aim of this thesis was to design novel waveguide structures, and to analyze them in view of complex phenomena of near-field propagation. For this purpose, experimental far-field measurements were used in combination with finite-difference simulations and phase retrieval methods. Two novel structures have been designed, fabricated and characterized: the waveguide array (WGA), yielding several waveguided beams in transmission, and multi-guide resonate beam couplers (RBCs), tailored to yield two or several reflected beams. Two novel structures have been designed, fabricated and characterized: the WGA, yielding several waveguided beams in transmission, and multi-guide RBCs, tailored to yield two or several reflected beams. The WGA and the multi-guide RBCs are not only distinct in the coupling geometry. A major difference is related to the fact that the WGA principle is based on the separation (non coupling) of the different transmitted wavelets, while the RBC functions are based on a strong coupling of guided radiation in several layers.

X-Ray Scattering of Soft Matter

X-Ray Scattering of Soft Matter PDF Author: Norbert Stribeck
Publisher: Springer Science & Business Media
ISBN: 3540698566
Category : Technology & Engineering
Languages : en
Pages : 251

Get Book Here

Book Description
This manual is a useful ready-reference guide to the analytical power of modern X-ray scattering in the field of soft matter. The author describes simple tools that can elucidate the mechanisms of structure evolution in the studied materials, and follows this up with a step-by-step guide to more advanced methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward – with a stress on careful planning of experiments and adequate recording of all required data.