X-Ray Diffraction by Polycrystalline Materials

X-Ray Diffraction by Polycrystalline Materials PDF Author: René Guinebretière
Publisher: John Wiley & Sons
ISBN: 1118613953
Category : Technology & Engineering
Languages : en
Pages : 290

Get Book Here

Book Description
This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.

X-Ray Diffraction by Polycrystalline Materials

X-Ray Diffraction by Polycrystalline Materials PDF Author: René Guinebretière
Publisher: John Wiley & Sons
ISBN: 1118613953
Category : Technology & Engineering
Languages : en
Pages : 290

Get Book Here

Book Description
This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.

X-ray Diffraction Procedures

X-ray Diffraction Procedures PDF Author: Harold P. Klug
Publisher:
ISBN:
Category :
Languages : en
Pages : 716

Get Book Here

Book Description


X-Ray Diffraction Crystallography

X-Ray Diffraction Crystallography PDF Author: Yoshio Waseda
Publisher: Springer Science & Business Media
ISBN: 3642166350
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.

Thin Film Analysis by X-Ray Scattering

Thin Film Analysis by X-Ray Scattering PDF Author: Mario Birkholz
Publisher: John Wiley & Sons
ISBN: 3527607048
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.

X-Ray Diffraction for Materials Research

X-Ray Diffraction for Materials Research PDF Author: Myeongkyu Lee
Publisher: CRC Press
ISBN: 1315361973
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.

Diffraction Analysis of the Microstructure of Materials

Diffraction Analysis of the Microstructure of Materials PDF Author: Eric J. Mittemeijer
Publisher: Springer Science & Business Media
ISBN: 3662067234
Category : Science
Languages : en
Pages : 557

Get Book Here

Book Description
Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

X-Ray Line Profile Analysis in Materials Science

X-Ray Line Profile Analysis in Materials Science PDF Author: Gubicza, Jen?
Publisher: IGI Global
ISBN: 1466658533
Category : Technology & Engineering
Languages : en
Pages : 359

Get Book Here

Book Description
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.

The Basics of Crystallography and Diffraction

The Basics of Crystallography and Diffraction PDF Author: Christopher Hammond
Publisher: Oxford University Press, USA
ISBN: 9780198505525
Category : Crystallography
Languages : en
Pages : 352

Get Book Here

Book Description
The present book provides a clear and comprehensive introduction to the topics of crystallography and diffraction for undergraduate and beginning graduate students and lecturers in physics, chemistry, materials and earth sciences, but will also be of interest to the layperson who wishes toknow about these topics beyond the level given in more general trade science books. The book shows how crystal structures may be built up from simple ideas of atomic packing and co-ordination, and develops the concepts of crystal symmetry, point and space groups by way of two-dimensional examples ofpatterns and tilings. Furthermore, the concept of the reciprocal lattice is explained in simple terms and its importance in an understanding of light, x-ray and electron diffraction shown. Finally, the book covers practical examples of the applications of these techniques, and describes theimportance of diffraction in the performance of optical instruments. For this second edition, the existing material has been thoroughly updated, additional figures and exercises have been supplied and two new chapters added. From reviews on the 1/e: '... This is a timely, well-constructed bookwhich should be seriously considered by every teacher of crystallography and can be recommended to anyone who wants to get to grips with crystallography and diffraction.' P. Goodhew, Journal of Microscopy, June 1998 'IUCr publications have always been outstanding for quality of presentation andexposition and this book maintains that high standard.' J.E. Chisholm, Mineralogical Magazine, February 1998

Theoretical Concepts of X-Ray Nanoscale Analysis

Theoretical Concepts of X-Ray Nanoscale Analysis PDF Author: Andrei Benediktovich
Publisher: Springer Science & Business Media
ISBN: 3642381774
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.

Two-dimensional X-ray Diffraction

Two-dimensional X-ray Diffraction PDF Author: Bob B. He
Publisher: John Wiley & Sons
ISBN: 1119356067
Category : Science
Languages : en
Pages : 492

Get Book Here

Book Description
An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.